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Abstract— This paper considers the design of rate-compatible
low-density parity-check (LDPC) codes with optimized degree
distributions for their corresponding rates. The proposed design
technique is based on extension, where a high-rate base code,
or daughter code, is progressively extended to lower and lower
rates such that each extension code is compatible with the
previously obtained codes. Specifically, two well-known parity
matrix construction methodologies, edge growth and parity split-
ting, are adapted to yield a flexible framework for constructing
rate-compatible parity check matrices. The design examples
provided are based on extrinsic information transfer (EXIT)
chart optimizations and demonstrate good performance up to
rates as low as1/5.

I. I NTRODUCTION

Irregular LDPC codes [1], [2], [3], and related constructions
[4], [5], [6], are known to exhibit better performance with
respect to turbo-code benchmarks on a variety of channels,
especially independent and identically distributed (i.i.d.) chan-
nel models. Such codes, based on a sparse and random parity
structure, are able to address wide ranges of information block
sizes and rates, while being amenable to efficient hardware
implementation. For these reasons, LDPC codes are likely
to become much more prevalent in forthcoming wireless
communication systems.

Families of rate-compatible error-correcting codes are useful
in different settings in communications engineering. For ex-
ample, the hybrid-ARQ protocol is employed to combat fading
in cellular systems. Due to channel variability, it is oftenmore
efficient to require multiple fast re-transmissions, as provided
by hybrid-ARQ, to ensure a successful decoding, rather then
provisioning for worst case channel conditions. In the case
of wireless vehicular technologies, fading rates are extremely
dynamic, and so rate-compatible codes are particularly well-
suited.

The conventional approach for obtaining a family of rate-
compatible codes is to start with a mother code of low-rate
and to selectively puncture redundant bits in order to obtain
various codewords of differing length. The problem with such
an approach is two-fold: (1) the mother code is typically
optimized for efficient operation at low-rates and subsequently
exhibits a widening gap to capacity as the amount of punc-
turing increases, and (2) optimizations of code structure and
puncturing patterns are treated separately which is suboptimal.
These shortcomings are addressed with the proposed design
technique as follows: Starting from a high-rate base code,
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Fig. 1. Rate-compatible parity matrices by extension

referred to as the “daughter code,” rate-compatible parity
check matrices are obtained progressively by extension, in
order of decreasing rate, so as to implicitly solve the problem
of puncturing. Further, the degree distribution of any given
sub-code is optimized for its corresponding rate.

Rate-compatible parity matrices produced by extension, il-
lustrated in Figure 1, may alternatively be viewed as puncture-
less codes, since any given transmission can be decoded with
its corresponding parity sub-matrix, rather than by inserting
zero LLR-values into a decoder operating on the largest parity
matrix (of lowest rate). The proposed design technique, a
hybrid of edge growth [7] and parity splitting [8], demonstrates
that the extension framework is capable of producing rate-
compatible LDPC codes with a uniform gap to capacity over
a wide range of rates.

Prior work on this topic includes [9] where puncturing is
proven to work well for constructing compatible families of
LDPC codes over a limited range of rates, especially for high
code rates, but suffers as the range is expanded. In [10], a
hybrid puncturing/extension approach is proposed but does
not exhibit the desired dynamic range or uniform performance
characteristic. Finally, the design in [11] proposes puncturing
in combination with information shortening for achieving code
rates less than one-half.

II. D ESIGN TECHNIQUE

The goal of this design is to produce compatible parity-
check matrices of flexible and dynamic rate. The proposed



technique extends from a daughter code parity matrix using
a hybrid of constrained edge growth and parity splitting,
as described in detail in this section. The resulting rate-
compatible LDPC codes exhibit a uniform gap to capacity,
less than 1 dB at moderate block-length, over a wide range of
rates.

A. Edge growth

Encoding and decoding of LDPC codes are typically de-
veloped with their Tanner graph representation. Edge growth
algorithms, in particular Progressive Edge Growth (PEG)
[7], are able to produce Tanner graphs with a good “girth,”
which relates to good minimum distance characteristics of
the codes. Generally, such algorithms emphasize selectionof
graph connections that benefit the performance of message
passing decoders. Finite graphs produced by edge growth
according to asymptotically optimal degree distributionshave
exhibited a robust performance, especially for high-rate and
short block-length codes, and are employed here for construct-
ing the daughter code (the high-rate base code), as well as in
motivating the extension techique described herein.

Specifically, the PEG algorithm sequentially and greedily
assigns edges in the graph such that the resulting local girth
(length of the shortest cycle involving a new edge) is maxi-
mized. Edges are assigned one-by-one in order of increasing
variable-degree, and, if desired, according to a given check-
degree distribution (otherwise, the check-degrees are concen-
trated around their mean-value as related to the variable-degree
distribution and code-length). Other variations of edge growth
algorithms emphasize cycle connectivity in choosing which
edges to add. Cycles that are well-connected to the rest of the
graph benefit from a better mix of uncorrelated information
regarding their code-bits in message passing decoding.

The edge growth algorithm is readily modified to extend
a base graph according to specific degree distributions. This
is referred to asconstrained edge growth, since the base
graph places constraints on both check- and variable-degree
distributions of subsequent extension graphs. In using edge
growth for extension as such, edges are only added to variable-
nodes that exhibit a degree increase, with some variable-nodes
potentially receiving no new edges. Constrained edge growth
is able to closely match optimal variable-degree distributions
over a course of many rates. It is mainly due to finite block-
length and check-degree constraints that a pure edge growth
approach is insufficient for producing rate-compatible parity
matrices of good performance. Thus, in the proposed design
technique, both edge-growth, for its variable-degree flexibility,
as well as parity splitting (or check splitting) [8], for exerting
a level of control over the parity-degree distribution, areused
to construct rate-compatible graphs.

B. Parity splitting

Check-irregular constructions (where both the check and
variable node degrees are varied), though forming a larger
class of irregular LDPC codes, tend to exhibit worse perfor-
mance than check-regular constructions (in which all check

nodes are of the same degree). Anecdotal evidence suggests
that it is much easier to construct good check-regular graphs
at finite block lengths since the burden of variable-irregularity
(in terms of local girth) is evenly distributed amongst the
parity nodes. Thus, as a guiding rule of thumb, check-degrees
of the extension codes should be concentrated as close as
possible around a certain desired average degree, namely
dopt(r), which is monotone increasing in the rate and given
by density evolution [2].

A parity check equation may be split into multiple parity
equations by introducing new degree-two symbol nodes (see
[8]). For example, suppose the setA = {x0, . . . , xd−1}
represents code-bits involved in a degree-d parity constraint:∑

x∈A x = 0. Then, letting xd denote a new degree-two
code symbol, the given parity equation is split into two:
the first involving bitsA1 ∪ {xd}, and the second involving
bits A2 ∪ {xd}, where A1 and A2 are disjoint andA =
A1 ∪ A2. Thus, if the new parities have degreesd1 and d2,
respectively, thend1 + d2 = d + 2 must hold. This operation
increases the number of check constraints by one, creating the
incremental redundancy bit,xd, while preserving the base code
structure (note that adding the new parity equations returns
the original). A redundancy-bit produced by parity splitting
may be computed with either of the resulting representations.
Moreover, with the exception of a new degree-two code-bit,
the variable-node degree distribution remains the same.

Parity splitting is a practical method for creating rate-
compatible parity matrices, since large degree check nodes
in the base graph are converted into multiple nodes of
smaller degree in extending graphs. Further, parity splitting
is essentially a rate-less technique (see [6]) since redundancy
is produced at the bit-level. Yet, the technique offers no
flexibility over the resulting variable-degree distribution, and
is therefore incapable of producing rate-compatible codes
with optimized degree distributions. Thus, a hybrid approach
is proposed in this paper, in which edge-growth is utilized for
creating good graphs with appropriate variable-node degree
distributions, and parity splitting is utilized for concentrating
the check-degrees as base codes are extended.

Example 1: A rate-1/2 parity-check matrix, compatible with
a rate-4/5 and rate-2/3 code, is constructed with the preceding
design approach. Figure 2 is a scatter-plot representationof
the irregular LDPC Tanner graph obtained for an information
block size ofk = 600 bits. Columns in the Figure represent
variable-nodes of the graph, and rows represent the check-
nodes. Accordingly, dots indicate edges connecting code-bits
to parity-constraints. The gray shaded region indicates that an
edge has arisen when the incident parity-node is split, yielding
the incident code-symbol. Any new code-symbol without an
edge in the grey shaded region is given by edge growth, which
is further constrained to be lower-triangular over the new-code
symbols.



Fig. 2. Rate-1/2 parity-check matrix obtained by edge growthand parity
splitting. Compatible with a rate-4/5 and rate-2/3 parity-check matrix,k =

600

III. E NCODING

The encoder is developed as a simple recursion, where ex-
tending code-words are are computed via matrix multiplication
with base code-words. For this the following notation is used:
The parity extending sub-matrix of theqth extension code is
given by[Pq Lq]. In general,Pq is anlq×nq−1 sparse matrix,
wherenq denotes the length of theqth code andlq denotes
the number of new code-symbols, so thatlq = nq − nq−1.
Similarly, Lq is anlq×lq sparse (and lower-triangular) matrix.
Figure 3 illustrates the parity extending sub-matrix[P2 L2],
corresponding to Example 1, where a rate-1/2 code extends a
rate-2/3 base code.

Assuming Lq is invertible, and that rows ofPq are
linearly independent, it is easy to show thatcq =
cq−1[Inq−1

(L−1

q Pq)
T] extends the base code-wordcq−1 to

code-wordcq, where In denotes then × n identity matrix.
The extension algorithm developed constrainsLq to be lower-
triangular and invertible (in factLq tends to be easily invert-
ible, as observed forL2 in Figure 2), and it is straight forward
to solve L−1

q Pq by Gaussian elimination. Note that when
the base graph is extended, any of its parity constraints are
potentially split, thus the following nomenclature is adopted:
Any sub-matrix X of the base graph becomesX ′ in the
extending graph.

IV. OPTIMIZATION FRAMEWORK

A framework for extending irregular LDPC codes to lower
rates is described, and examples based on EXIT chart opti-
mizations [12], [13], [14] are provided. Since EXIT charts rely
on large code-word asymptotics, the optimization framework is
essentially independent of information block-length, andthus
one family of optimized degree distributions may be used to
produce rate-compatible codes, for the same set of rates, for
multiple information block-lengths.

Given a base graph of ratern−1 and a target ratern <
rn−1, a fractionγn = 1 − rn/rn−1, relative to the extending
code-word length, of new code symbols are introduced. The
basic approach consists of two steps: (1) A certain fraction,
denotedαn, of the new code symbols are obtained by splitting
check nodes of the base graph. This yields a fraction ofαnγn

new degree-two variable nodes. (2) The remaining fraction,
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Fig. 3. Parity-check matrix decomposition for recursive encoding corre-
sponding to example in Fig. 2

1 − αn, of new code symbols are developed by constrained
edge growth. Thus,αn and the extension graph check- and
variable-degree distributions are the variables to be optimized.
The optimization constraints are given by base graph check-
and variable-degree distributions, and the extending rate, rn.

All variable-degree distributions used in this paper are given
by EXIT chart optimizations with a rate-compatible constraint.
Then, since the base graph check-degree distribution is modi-
fied by splitting its check nodes, the focus is on choosingαn

and the degree-distribution of check-nodes produced by edge
growth. Ideally, these parameters are optimized jointly, over
the set of supported rates, in order to ensure a global perfor-
mance characteristic. However, this would be computationally
quite complex, and in the following we describe a simpliflied,
sequential optimization procedure which yields an acceptable
level of performance.

Simplified optimization: The rate-compatible codes are op-
timized sequentially, in order of decreasing rate. We assume
that all parity nodes that are split are done so evenly, that
they are split in order of largest degree, and that all new
parity constraints developed by edge growth have the same,
possibly fractional, degree, namelydn. A fractional degree in
this context is interpreted as an average degree arising from
two consecutive integers. A heuristic which attempts to con-
centrate the check-degrees around their optimal mean-value,
dopt(rn), is used to chooseαn. Thus, withαn and the base
graph check-distribution specified, choosingdn ≈ dopt(rn)
suffices to describe the extending graph check-distribution,
while adhering to the concentration heuristic. Finally, EXIT
chart matching is employed to optimize the variable-degree
distribution with afore mentioned constraints, includingαnγn

new degree-two variable-nodes.
Figure 4 shows an example of EXIT charts of rate-

compatible codes that results from the preceding optimization
approach. The EXIT charts consist of variable- and check-node
transfer functions that express an input-output mutual informa-
tion relationship regarding the estimated code-symbols (see for
example [13]). Starting from a daughter code and progressively
optimizing the extending codes in order of decreasing rate
places the most stringent constraints on lowest-rate code,and
therefore a performance degradation is expected at low-rates.
An optimization framework that employs reverse- as well as
forward-compatibility constraints could be used to emphasize
any member of the rate-compatible family. However, codes de-
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Fig. 4. Optimized EXIT functions with forward compatibility constraint

signed in this paper utilize the forward-compatible constrained
optimization as described, which emphasizes the daughter
code (i.e. the first transmission).

V. RESULTS

Rate-compatible parity matrices are constructed according
to the proposed design technique for the following set of
rates: 4/5, 2/3, 1/2, 1/3, and 1/5. In this paper, the same
set of optimized degree distributions is used to produce rate-
compatible parity matrices for all information block-sizes.
In constructing the codes, parity-nodes of largest degree are
always split first, but otherwise in no particular order. The
parity splitting technique benefits modestly by incorporating
a cycle connectivity metric in choosing which nodes to split,
especially for the high-rate codes. (Note that parity equations
may be split in multiplicity which is useful if there is a
significant step-size between the base- and extension-code
rate.)

Figure 5 demonstrates the code-word error-rate (WER) and
information-bit error-rate (BER) performance for an informa-
tion block-size ofk = 600 bits. The codes demonstrate a good
performance for this block-size, as compared with turbo-code
benchmarks, and exhibit no significant error floors up to WER
of 1e-3.

Figure 6 shows the gap to capacity for information block-
lengths of 600, 1500, and 6000, as measured at a BER of 1e-4.
The results exhibit a roughly uniform gap to capacity, less than
1 dB atk = 6000, over a wide range of code rates. The gap to
capacity begins to widen at low-rates, in the area of rate-1/5
for the design example provided. The widening gap at low
code-rates stems from the simplified optimization technique,
with forward compatibility constraint, as well as difficulties
with conventional irregular LDPC designs at low code-rates.

VI. CONCLUSION

We demonstrate that extension based development of irreg-
ular LDPC Tanner graphs is able to produce rate-compatible
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Fig. 5. Performance of rate-compatible irregular LDPC codes,k = 600

codes of good performance. The technique is flexible in
the range and granularity of the rates that it supports, and
it inherently addresses the problem of puncturing which is
present in mother code based designs. Moreover, since every
subcode is viewed as punctureless, this construction also
shows a decoding complexity advantage.

As noted in [3], standard irregular LDPC code constructions
are challenged at low code-rates. This issue has been addressed
in the literature with the use of precoding techniques. Exam-
ples of pre-coded irregular codes on graphs include repeat ac-
cumulate (RA) style codes [4], [5], and raptor codes [6]. Such
architectures bear an increased similarity with turbo-codes,
which perform well at low rates. With the additional constraint
of forward-compatibility, it is conjectured that the application
of precoding techniques could benefit the performance of rate-
compatible LDPC codes built by extension. This is an item of
future study. Work in this direction is reported in [15].

Codes designed in this paper differ significantly from
the random-like constructions prescribed in [2]. Although
asymptotic arguments are employed to optimize the degree-
distributions, we further account for the specific matrix con-
struction technique, which is chosen primarily to address
finite block-length considerations. At the opposite end of
the spectrum from large, random-looking graphs are proto-
graph based constructions [16], which are derived from copies
of a much smaller base graph, with highly structured inter-
connections. Proto-graph based LDPC codes, in their sim-
plicity (elagance), offer desirable implementation advantages.
However, it is conjectured here that the reduced degrees of
freedom of proto-graphs lead to an increased gap to capacity.
This claim is supported by direct result comparisons with [17].
In short, the more “random-like” flexibility of extension-style
constructions should benefit their performance, if at the cost
increased complexity of description and implementation, but
this is not yet quantified.
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