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Abstract— Information-theoretic analyses for data hiding pre-
scribe embedding the hidden data in the choice of quantizer for
the host data. In this paper, we propose practical realizations of
this prescription for data hiding in images, with a view to hiding
large volumes of data with low perceptual degradation. The hid-
den data can be recovered reliably under attacks such as compres-
sion, and limited amounts of image tampering and image resizing.
The three main findings are as follows:
(i) In order to limit perceivable distortion while hiding large
amounts of data, hiding schemes must use image-adaptive crite-
ria in addition to statistical criteria based on information theory.
(ii) The use of local criteria to choose where to hide data can po-
tentially cause desynchronization of the encoder and decoder. This
synchronization problem is solved by the use of powerful, but sim-
ple to implement, erasures and errors correcting codes, which also
provide robustness against a variety of attacks.
(iii) For simplicity, scalar quantization based hiding is employed,
even though information-theoretic guidelines prescribe vector
quantization based methods. However, an information-theoretic
analysis for an idealized model is provided to show that scalar
quantization based hiding incurs approximately only a 2 dB
penalty in terms of resilience to attack.

I. INTRODUCTION

The past decade has witnessed a surge of research activ-
ity in multimedia information hiding, targeting applications
such as steganography (or covert communication), digital rights
management, and document authentication. Another important
class of applications is the seamless upgrade of communica-
tion or storage systems: additional data and meta-content can
be hidden in existing data streams, such that upgraded receivers
can decode both the original and the hidden data, while existing
receivers can still decode the original data. Several techniques
have been proposed in the literature that hide information in
images and video in a robust and transparent fashion (for com-
prehensive surveys, see [1], [2], [3]). Much of this activity is
geared towards the application of digital rights management,
with a focus on devising digital watermarks that are robust to
malicious attacks that aim to remove the watermark while pre-
serving the content quality. A number of freeware packages for
such attacks are available, such as Stirmark [4], which employ
geometric distortions such as random bending, rotation, scal-
ing, translation, and cropping. A number of recent efforts in
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data hiding focus, therefore, on devising watermarks that sur-
vive such attacks (see, for example, [5], [6]). Another potential
adversary for the data hider is the steganalyst, who tries to de-
tect the presence of hidden data. Thus, there are significant
research efforts both in steganalysis ([7], [8]), and on hiding in
a manner that is difficult to detect ([9], [10]).

In this paper, we propose a framework for hiding large vol-
umes of data in images while incurring minimal perceptual
degradation. Our work differs from the preceding literature in
several ways. First, we seek to embed much larger volumes
of data than required for watermarking, targeting applications
such as steganography and seamless upgrade of communica-
tion and storage systems, rather than digital rights management.
Second, because of our target applications, we aim for robust-
ness not against malicious attacks such as Stirmark’s geometric
attacks, but against “natural” attacks such as compression (e.g.,
a digital image with hidden content may be compressed as it
changes hands, or as it goes over a low bandwidth link in a
wireless network). It turns out, however, that our schemes are
actually robust against a broader class of attacks than we ini-
tially designed for, such as tampering, and a limited amount of
resizing. The hiding methods we use are guided by the growing
literature on the information theory of data hiding (summarized
in the next paragraph), but are adapted to the specific applica-
tion of hiding in images.

Information-theoretic treatments of the data hiding problem
typically focus on hiding in independent and identically dis-
tributed (i.i.d.) Gaussian host samples. The hider is allowed to
induce a mean squared error of at most D1, while an attacker
operating on the host with the hidden data is allowed to induce
a mean squared error of at most D2. Information-theoretic pre-
scriptions in this context translate, roughly speaking, to hiding
data by means of the choice of the vector quantizer for the host
data, with the AWGN attack being the worst-case under cer-
tain assumptions. This method of hiding was first considered
by Costa [11], based on results of Gel’fand and Pinsker [12] on
coding with side information (with the host data playing the role
of side information). Game-theoretic analyses of data hiding,
with the hider and attacker as adversaries, have been provided
by Moulin and O’Sullivan [13], and by Cohen and Lapidoth
[14]. Estimates of the hiding capacity of an image, based on
a parallel Gaussian model in the transform domain, have been
provided by Moulin and Mihcak [15]. Chen and Wornell [16]
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present a variety of practical approaches to data hiding, with a
focus on scalar quantization based hiding, and show that these
schemes are superior to spread spectrum hiding schemes, which
simply add a spread version of the hidden data to the host [17].
A scalar quantization based data hiding scheme, together with
turbo coding to protect the hidden data, is considered in [18],
while a trellis coded vector quantization scheme is considered
by Chou et al [19].

Relative to the preceding methods, a key novelty of our ap-
proach is that our coding framework permits the use of local
criteria to decide where to embed data. The main ingredients of
our embedding methodology are as follows.
(a) As is well accepted, data embedding is done in the trans-
form domain, with a set of transform coefficients in the low
and mid frequency bands selected as possible candidates for
embedding. (These are preserved better under compression at-
tacks than high frequency coefficients)
(b) A novel feature of our method is that, from the candidate
set of transform coefficients, the encoder employs local crite-
ria to select which subset of coefficients it will actually embed
data in. In example images, the use of local criteria for decid-
ing where to embed is found to be crucial to maintaining image
quality under high volume embedding.
(c) For each of the selected coefficients, the data to be embed-
ded indexes the choice of a scalar quantizer for that coefficient.
We motivate this by an information-theoretic analysis showing
that, for an idealized model [11], scalar quantization based hid-
ing is only about 2 dB away (in terms of resilience to attack)
from optimal vector quantization based hiding.
(d) The decoder does not have explicit knowledge of the loca-
tions where data is hidden, but employs the same criteria as the
encoder to guess these locations. The distortion due to attacks
may now lead to insertion errors (the decoder guessing that a
coefficient has embedded data, when it actually does not) and
deletion errors (the decoder guessing that a coefficient does not
have embedded data, when it actually does). In principle, this
can lead to desynchronization of the encoder and decoder.
(e) An elegant solution based on erasures and errors correcting
codes is provided to the synchronization problem caused by the
use of local criteria. Specifically, we use a code on the hidden
data that spans the entire set of candidate embedding coeffi-
cients, and that can correct both errors and erasures. The subset
of these coefficients in which the encoder does not embed can
be treated as erasures at the encoder. Insertions now become
errors, and deletions become erasures (in addition to the era-
sures already guessed correctly by the decoder, using the same
local criteria as the encoder). While the primary purpose of the
code is to solve the synchronization problem, it also provides
robustness to errors due to attacks.

Two methods for applying local criteria are considered. The
first is the block-level Entropy Thresholding (ET) method,
which decides whether or not to embed data in each block (typ-
ically 8×8) of transform coefficients, depending on the entropy,
or energy, within that block. The second is the Selectively Em-
bedding in Coefficients (SEC) method, which decides whether
or not to embed data based on the magnitude of the coeffi-
cient. Reed-Solomon (RS) codes [20] are a natural choice for
the block-based ET scheme, while a “turbo-like” Repeat Accu-

mulate (RA) code [21] is employed for the SEC scheme. We are
able to hide high volumes of data under both JPEG and AWGN
attacks. Moreover, the hidden data also survives wavelet com-
pression, image resizing and image tampering attacks.

The use of perceptual models and image-adaptation is not
new in the watermarking literature. Many of the techniques
proposed in the literature are based on a strategy commonly
known as perceptual shaping (see, for example, [3], [22], and
Chapter 7 in [23]). Mostly used in conjunction with spread-
spectrum watermarking, perceptual shaping refers to the idea
of adjusting the strength of the watermark based on the percep-
tual sensitivity of a region in the image. All these methods use
some model that assigns weights to various regions of the im-
age. This weight determines the strength of the watermark that
is added to that part of the image. However, by reducing the
strength of the hidden data in the perceptually sensitive area, the
robustness of this data against attacks is compromised. It should
be noted that the hiding techniques presented in this paper are
significantly different from the aforementioned methods. Our
approach is based on the idea of not “disturbing” the sensitive
coefficients, so as to achieve good image quality without com-
promising robustness. The number of bits hidden is determined
dynamically by the scheme based on the host image content.

We have recently become aware of independent work by Wu
and Lui [24], who also propose the concept of uneven embed-
ding, where certain transform coefficients are not used for em-
bedding based on a perceptual criteria. Their method, however,
requires side information about the hiding locations to be sent
to the decoder, which reduces the size of the payload. In con-
trast, our coding framework obviates the need for sending syn-
chronization data explicitly, while providing great flexibility in
terms of the use of application-specific local adaptation criteria
(e.g., not hiding data in a sensitive portion of a medical image).
In addition, it provides robustness against a variety of attacks
such as tampering and resizing.

Note that, while the proposed coding schemes solve the spe-
cific insertion-deletion problem that arises in this setting, they
do not apply to the more general insertion-deletion channel con-
sidered in [25], where the length of the overall symbol sequence
can vary. In our situation, the set of candidate coefficients for
embedding is the same, and is known to both encoder and de-
coder: the uncertainty only lies in which of these candidates
were actually used for embedding.

Apart from the use of the local criteria and the coding frame-
work, the information-theoretic analysis of scalar quantization
based hiding for the idealized model in the paper by Costa [11]
is also new. A similar result has been derived in independent
work by Eggers et al [26]. In order to compare the theoreti-
cal capacity with practically achievable rates, we have also im-
plemented a hiding scheme specifically optimized for AWGN
attacks, which gets to within 2 dB of the scalar hiding capacity.

The rest of the paper is organized as follows. In section
II, we find the mutual information for the scalar quantization
based hiding methods and also derive a decision statistic to be
passed to the decoder. In Section III, we introduce our image-
adaptive hiding schemes. The coding framework to counter in-
sertions/deletions and errors is described in Section IV followed
by a discussion on decoding (Section V). A hiding method op-
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timized to AWGN attacks is described in Section VI. Results
are presented in section VII and discussed in section VIII.

II. QUANTIZATION BASED DATA HIDING

A. Embedding data in choice of quantizer

Data is embedded in the host medium through the choice of
scalar quantizer, as in [16]. For example, consider a uniform
quantizer of step size ∆, used on the host’s coefficients in some
transform domain. Let odd reconstruction points represent a
hidden data bit ‘1’. Likewise, even multiples of ∆ are used to
embed ‘0’. Thus, depending on the bit value to be embedded,
one of two uniform quantizers of step size 2∆ is chosen. More-
over, the quantizers can be pseudo-randomly dithered, where
the chosen quantizers are shifted by a pseudo-random sequence
available only to encoder and decoder. As such, the embedding
scheme is not readily decipherable to a third party observer,
without explicit knowledge of the dither sequence.

Hard decision decoding in this context is performed by quan-
tizing the received coefficient to the nearest reconstruction point
of all quantizers. An even reconstruction point indicates that a
‘0’ has been hidden. Likewise, if a reconstruction point lies on
an odd quantizer, a ‘1’ has been hidden. However, if more in-
formation regarding the statistics of the attack is available, soft
decisions can be used to further improve performance. In Sec-
tion II-B, we compute the capacity of scalar quantization based
hiding for the specific case of AWGN attacks. Implicit in our
formulation is the use of soft decisions that account for both the
quantization noise and the AWGN.

B. Capacity of scalar quantization based data hiding

We now show that our scalar quantization based hiding incurs
roughly only a 2 dB penalty for the worst-case AWGN attack.
Letting D1 and D2 denote the mean squared embedding in-
duced distortion and mean squared attack distortion, the hiding
capacity with AWGN attack is given by Cv = 1

2
log(1+ D1

D2
), in

the small D1, D2 regime that typical data hiding systems oper-
ate [11], [13]. We compare this “vector capacity” (termed thus
because the optimal strategy involves vector quantization of the
host) to the mutual information of a scalar quantizer embedding
scheme with soft decision decoding.

Consider a data hiding system where the information symbol
to be embedded is taken from an alphabet X . The host’s origi-
nal uniform quantizer is divided into M uniform sub-quantizers
(each with quantization interval M∆), where M = |X |, a
power of two. Thus, log2 M bits are hidden per host symbol.

We consider the distortion-compensated quantization embed-
ding scheme of [16] with soft decision decoding. Here, the uni-
form quantizer is scaled by α ∈ (0, 1], increasing the distance
between adjacent quantizers to ∆/α. As such, the embedding
robustness is increased by a factor 1/α2 (in the squared mini-
mum distance sense), and embedding induced distortion is in-
creased by the same factor. Encoding the information symbol as
a linear combination of the host symbol and its quantized value,
as in the following, compensates for the additional distortion.
Denoting the host coefficient by C, and the hidden message
symbol by X , the symbol transmitted by hider is given by

QX(C) = αqX(C) + (1 − α)C (1)

where qx(·) the scaled uniform quantizer used to embed the in-
formation symbol x (with quantization interval M∆/α). Under
an AWGN attack, the received symbol is

Y = QX(C) + W

= αqX(C) + (1 − α)C + W

= qX(C) + (1 − α)(C − qX(C)) + W

where W is AWGN with mean zero and variance D2.
The parameter α achieves a tradeoff between uniform quan-

tization noise and AWGN. The optimal value for α for max-
imizing the signal-to-noise ratio (SNR) at the decoder, which
we have found numerically also to maximize the mutual infor-
mation I(X;Y ), is [16]

αopt =
D1

D1 + D2

(2)

The probability density function of the combined additive in-
terferers, N = (1 − α)Z + W , where Z ≡ C − qX(C) is the
uniform quantization noise, is given by convolving the uniform
and Gaussian densities:

fN (x) =
α(2πD2)

− 1
2

(1 − α)M∆

∫

(1−α)M∆
2α

− (1−α)M∆
2α

exp(− (x − τ)2

2D2

)dτ (3)

We compute the mutual information I(X;Y ) = H(X) −
H(X|Y ) for X uniform over its M -ary alphabet as an esti-
mate of the capacity with scalar quantization based embedding.
Thus, H(X) = log2 M . To find, H(X|Y ), we now compute
pX|Y , the conditional probability mass function of X given Y ,
and fY , the probability density function of Y .

Consider the quantization interval in which the received sym-
bol Y appears, and define its midpoint as the origin. Let-
ting y denote the abscissa, the nearest quantizers appear at
y = ± ∆

2α
. Conditioned on the input X = x and host coeffi-

cient C = c, the distribution of Y is given by fY |X,C(y|x, c) =

fN (y −mx
∆

2α
− kc

M∆

α
), with fN as in (3). Here, mx ∈ M =

{±1,±3, ...,±2M−1} is uniquely determined by the informa-
tion symbol x, kc ∈ Z by the host coefficient c, and the hidden
quantized host coefficient qx(c) by the pair (mx, kc). Thus we
have

fY |X(y|x) =

∫

C
fY |X,C(y|x, c)fC(c)dc

∝
∑

k∈Z

fN (y − mx

∆

2α
− k

M∆

α
) (4)

fY (y) =
∑

x∈X
fY |X(y|x)pX(x)

∝
∑

m∈M

∑

k∈Z

fN (y − m
∆

2α
− k

M∆

α
) (5)

where we have assumed that the host C and message X are sta-
tistically independent, and that the host’s density fC is roughly
constant on an interval around Y , an assumption that is reason-
able in the low distortion regime, where the quantization inter-
val is small with respect to variations in the host’s density. This
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implies that the density of Y is ∆

α
–periodic, so that it suffices to

restrict attention to the interval [− ∆

2α
, ∆

2α
], with fY normalized

accordingly. Applying Bayes’ rule, the distribution of X given
Y is

pX|Y (x|y) =
fY |X(y|x)pX(x)

fY (y)
(6)

so that we can now compute

H(X|Y ) =

∫

Y

∑

x∈X
pX|Y (x|y) log pX|Y (x|y)fY (y)dy

and hence I(X;Y ).
Due to the exponential decay of the Gaussian density, the

summation in (4) is well approximated with only the k = 0
term, i.e. the nearest quantization point to y corresponding to
x being transmitted. Figure 1 plots the mutual information ob-
tained with 2, 4 and 8-ary signaling, as well as the vector ca-
pacity. We observe roughly a 2 dB loss due to the suboptimal
scalar quantization encoding strategy.
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Fig. 1. Gap between scalar and vector quantizer data hiding systems.

C. Soft decision statistic for Distortion Compensated hiding

We conclude our analysis by noting that the soft decision
statistic, used by an iterative decoder, is the log likelihood ratio
(LLR), given in the following for the case of binary signaling.

Λ(y) = log
pX|Y (0|y)

pX|Y (1|y)
= log

fY |X(y|0)
fY |X(y|1) (7)

When α = 1 and (4) is approximated with k = 0 term, the LLR
reduces to

Λ(y) = log
fW (y − ∆

2
)

fW (y + ∆

2
)

=
y∆

D2

(8)

We now compute log likelihood ratio (LLR) for any value
of α ∈ (0, 1]. We proceed by finding the conditional proba-
bility density functions fY |X(y|0) and fY |X(y|1), which could
be written using (4) as convolution of uniform and Gaussian
densities. Again, approximating (4) using the k = 0 term, we
obtain,

fY |X(y|0) =
α(2πD2)

− 1
2

2(1 − α)∆

∫

(1−α)∆
α

− (1−α)∆
α

exp(− (y − τ − ∆

2α
)2

2D2

)dτ

fY |X(y|1) =
α(2πD2)

− 1
2

2(1 − α)∆

∫

(1−α)∆
α

− (1−α)∆
α

exp(− (y − τ + ∆

2α
)2

2D2

)dτ

The integrals in the above equations can be written as dif-
ference of two Q functions, the complimentary cumulative dis-
tribution function of a standard Gaussian random variable. We
get,

fY |X(y|0) =
α

2(1 − α)
{Q(

y + ∆ − 3∆

2α√
D2

)−Q(
y − ∆ + ∆

2α√
D2

)}

fY |X(y|1) =
α

2(1 − α)
{Q(

y + ∆ − ∆

2α√
D2

)−Q(
y − ∆ + 3∆

2α√
D2

)}

Substituting above equations in LLR expression (7), we get,

Λ = log
Q(

y+∆− 3∆
2α√

D2
) − Q(

y−∆+ ∆
2α√

D2
)

Q(
y+∆− ∆

2α√
D2

) − Q(
y−∆+ 3∆

2α√
D2

)
(9)

Thus we get a relatively simple expression for the soft deci-
sion statistic for a general value of α ∈ (0, 1]. The decision-
statistic derived here is employed in the iterative decoding of
the AWGN optimized hiding (Section V). Note that, while we
have used the k = 0 term in (4) in deriving these analytical
expressions, an arbitrary degree of accuracy can be obtained by
considering more terms.

III. IMAGE ADAPTIVE DATA HIDING

In order to robustly hide large volumes of data in images
without causing significant perceptual degradation, hiding tech-
niques must adapt to local characteristics within an image.
Many prior quantization based blind data hiding schemes use
global criteria regarding where to hide the data, such as statisti-
cal criteria independent of the image (e.g. embedding in low or
mid-frequency bands), or criteria matched to a particular image
(e.g. embedding in high-variance bands). These are consistent
with information theoretic guidelines [15], which call for hiding
in “channels” in which the host coefficients have high variance.
This approach works when hiding a few bits of data, as in most
watermarking applications. However, for large volumes of hid-
den data, hiding based on such global statistical criteria can lead
to significant perceptual degradation. Figure 2 shows 512×512
Harbor image with 16,344 bits hidden using local criteria and
with 16,384 bits hidden (a rate of 0.0625 bits/pixel) using statis-
tical criteria (hiding in low frequency band). Both the images
were designed to survive JPEG compression at a quality fac-
tor of 25. Note that the statistical criteria based scheme is one
that hides in all the coefficients in a predefined band. In this
particular example, a low frequency band comprising of 4 AC
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(a) 16,344 bits hidden using local criteria, PSNR = 32.6 dB (b) 16,384 bits hidden using statistical criteria, PSNR = 31.8 dB

Fig. 2. Local vs Statistical criteria: 512×512 Harbor image with approximately same number of bits hidden using local and statistical criteria. It can be seen that
the perceptual quality of the composite image is better in the former.

coefficients was used. It is observed that the perceptual qual-
ity as well as the PSNR is better for the image with hidden
data using local criteria. Note that though the PSNR is only
marginally better (0.8 dB higher), the actual perceptual quality
is much better. This illustrates that local criteria must be used
for robust and transparent high volume embedding.

Although we do not use specific perceptual models, we refer
to our criteria as ‘perceptual’ because our goal in using local
adaptation is to limit perceivable distortion. As evident in the
example presented (Figure 2), the employed criterion does suc-
ceed in limiting perceptual distortion when hiding a large vol-
ume of data. We now describe and extend two image-adaptive
hiding techniques, which we had first proposed for uncoded
hidden data in [27] and then with a coding framework in [28].

A. Entropy Thresholding scheme

The entropy thresholding (ET) scheme uses the energy (or
2-norm entropy) of an 8×8 block to decide whether to embed
in the block or not. Only those blocks whose entropy exceeds a
predetermined threshold are used to hide data.

The embedding procedure is outlined as follows. The image
is divided into 8×8 non-overlapping blocks, and an 8×8 Dis-
crete Cosine Transform (DCT) of the blocks is taken. Let us
denote the intensity values of the 8×8 blocks by aij and the cor-
responding DCT coefficients by cij , where i, j ∈ {0, 1, ..., 7}.
Thus,

c = DCT2(a) (10)

where DCT2 denotes a 2D DCT.
Next, the energy of the blocks is computed as follows

E =
∑

i,j

‖cij‖2, ∀ i, j ∈ {0, 1, ..., 7}, (i, j) 6= 0.

It should be noted that the DC coefficient is neither used for
entropy calculation nor for information embedding. This is be-
cause JPEG uses predictive coding for the DC coefficients and
hence, any embedding induced distortion would not be limited
a single 8×8 block.

The blocks whose energy E is greater than a predefined
threshold are selected for information embedding. These blocks
are now divided by the JPEG quantization matrix whose entries
are computed for a given design quality factor (QF) as per the
codec implementation of independent JPEG group (IJG) [29].
The design quality factor determines the maximum JPEG com-
pression that the hidden image will survive. Let us denote the
quantization matrix entries for a particular quality factor QF
as MQF

ij , where i, j ∈ {0, 1, ..., 7} and QF ∈ {1, 2, ..., 100},
where QF = 100 corresponds to the best quality image. The
coefficients cij used for information embedding are computed
as

c̃ij =
cij

MQF
ij

, ∀ i, j ∈ {0, 1, ..., 7}. (11)

Next, the coefficients c̃ij are scanned in zig-zag fashion, as in
JPEG, to get one dimensional vector c̃k where 0 ≤ k ≤ 63. The
first n of these coefficients are used for hiding after excluding
the DC coefficient (k = 0 term). Thus, low frequency coeffi-
cients are used for embedding. Bits are hidden using choice of
scalar quantizer (Section II). For a binary signature bitstream
b, the hidden coefficients d̃k are given using the notation in (1)
as,

d̃k =

{

Qbl
(c̃k) if 1 ≤ k ≤ n,

c̃k otherwise.
(12)

where bl ∈ {0, 1} is the incoming bit that determines which one
of the two quantizers Q1(·) and Q0(·) is used.
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TABLE I
TYPICAL VALUES OF PARAMETERS USED IN ET SCHEME FOR VARIOUS

DESIGN QUALITY FACTORS

Design Number of Block Entropy
Quality Factor coefficients/block Threshold

75 20 4000
50 14 14000
25 8 25000

The hidden coefficients d̃k are reverse scanned to form an
8×8 matrix {d̃ij}8

i,j=1, and multiplied by the JPEG quantiza-
tion matrix to obtain {dij}8

i,j=1. Finally, the inverse DCT of
{dij}8

i,j=1 yields the hidden image intensity values a′
ij for that

block.
Low frequency coefficients are used to embed in qualify-

ing blocks (i.e., blocks that satisfy the entropy test). Hiding
in these coefficients induces minimal distortion due to JPEG’s
finer quantization in this range. Thus, this scheme employs a
statistical criterion by hiding in the frequency subbands of large
variance, while satisfying a local perceptual criterion via the
block entropy threshold.

In general, compression (quantization of the DCT coeffi-
cients) decreases the entropy of the block. Hence, in the un-
coded version of the scheme, it is necessary to check that the
entropy of each block used to embed information, compressed
to the design quality factor, still exceeds the threshold entropy.
If a particular block passes the test before hiding but fails the
test after the hiding process, we keep it as such, and embed
the same data in the next block. However, such a test becomes
unnecessary when the ET scheme is used along with a coding
framework (Section IV).

The decoder checks the entropy of each 8×8 block to decide
whether data has been hidden. Two parameters are shared by
the encoder and decoder in this scheme, namely, the block en-
tropy threshold and the set of coefficients used for embedding
in a block. As stated, the coefficients are scanned in zig-zag
fashion, and only first n are used, excluding the DC coefficient.
The parameters values are independent of the host image, and
are determined based on the design quality factor used for em-
bedding. Table I shows the values of these parameters used in
our experiments.

B. Selectively Embedding in Coefficients scheme

In the Selectively Embedding in Coefficients (SEC) scheme,
instead of deciding where to embed at the block level, we do a
coefficient-by-coefficient selection, with the goal of embedding
in those coefficients that cause minimal perceptual distortion.

Here too, an 8×8 DCT of non-overlapping blocks is taken
and the coefficients are divided by the JPEG quantization ma-
trix at design quality factor. Thus, cij are computed using (10)
and then divided by JPEG quantization matrix using (11) to get
c̃ij in the same way as in ET scheme, but the entropy calculation
and thresholding steps are skipped. Again, the coefficients are
zig-zag scanned (to get c̃k) and only a predefined low frequency
band is considered for hiding (i.e., 1 ≤ k ≤ n).

Next, we quantize these coefficient values ck to nearest inte-
gers and take their magnitude to get rk,

rk = |QI(c̃k)|, 1 ≤ k ≤ n. (13)

We embed in a given coefficient only if rk exceeds a positive
integer threshold t. Embedding is again done using choice of
scalar quantizers. We send either Q1(c̃k) or Q0(c̃k) depending
on the incoming bit. Thus d̃k can be given as

d̃k =







Qbl
(c̃k) if 1 ≤ k ≤ n, and rk > t,

rk if rk = t,
c̃k otherwise.

(14)

After reverse scanning, multiplication by JPEG quantization
matrix, and inverse DCT, we get the hidden image intensity val-
ues a′

ij for that block.
A check is required in the scheme when the magnitude of

the coefficient lies between t and t + 1. If the quantized value
Qbl

(c̃k) equals t in (14), then the decoder cannot tell whether
this coefficient was not chosen for hiding because of the thresh-
old criteria, or whether bl was hidden in this coefficient. In
coded version of the scheme, this is regarded as an erasure and
decoding is performed accordingly. In the uncoded version of
the scheme, the same bit bl is embedded in the next coefficient
eligible for embedding. This is done in order to maintain syn-
chronization between encoder and decoder. Note that the de-
coder simply disregards all coefficients that quantize to a value
with magnitude ≤ t. This check also makes sure that there are
no insertions or deletions for JPEG attacks with smaller quanti-
zation intervals (higher QFs).

The simplest SEC scheme is the zero-threshold SEC scheme
(t = 0), where the coefficients that are not quantized to zero are
used to embed information. High embedding rates are achieved
using this zero-threshold SEC scheme with very low percep-
tual degradation, which resembles that due to JPEG compres-
sion. To understand this intuitively, it should be noted that there
are many image coefficients that are very close to zero once di-
vided by the JPEG quantization matrix, and would be quantized
to zero upon JPEG compression. Embedding ‘1’ in such coef-
ficients introduces a large amount of distortion relative to the
original coefficient size, a factor that seems to be perceptually
important. This is avoided by choosing not to use zeros for
embedding.

As the threshold increases, fewer coefficients qualify for em-
bedding, and hence less data can be hidden, which provides a
tradeoff between hiding rate and perceptual quality. For thresh-
olds t ≥ 2, it becomes difficult for a human observer to dis-
tinguish between the original and composite image, while em-
bedding reliably at fairly high rates. For example, in 512×512
Peppers image, and threshold t = 2, one can hide about 2800
bits such that it survives 0.4 bpp JPEG compression (QF=25)
and still the composite image is almost indistinguishable from
the original one.

In the SEC scheme, we have more control on where to hide
data compared to the ET scheme, hence it achieves better per-
formance in terms of smaller perceptual degradation for a given
amount of data. Another key advantage of the scheme is that it
automatically determines the right amount of data to be hidden
in an image based on its characteristics.
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IV. CODING FOR INSERTIONS AND DELETIONS

In the previous section, we noted that use of image-adaptive
criteria is necessary when hiding large volumes of data into im-
ages. A threshold is used to determine whether to embed in
a block (ET scheme) or in a coefficient (SEC scheme). More
advanced image-adaptive schemes would exploit the human vi-
sual system (HVS) models to determine where to embed infor-
mation. Distortion due to attack may cause an insertion (de-
coder guessing that there is hidden data where there is no data)
or a deletion (decoder guessing that there is no data where there
was data hidden). Such insertions and deletions can potentially
cause catastrophic loss of synchronization between encoder and
decoder.

In the ET scheme, insertions and deletions are observed when
the attack quality factor is mismatched with the design quality
factor for JPEG attack. However, for the SEC scheme, there
are no insertions or deletions for most of the images for JPEG
attacks with quantization interval smaller than or equal to the
design interval. This is because no hidden coefficient with mag-
nitude ≤ t can be ambiguously decoded to t + 1 due to JPEG
quantization with an interval smaller than the design one. Both
the ET and SEC schemes have insertions/deletions under other
attacks.

A. Coding Framework

The bit stream to be hidden is coded, using a low rate code,
assuming that all host coefficients that meet the global crite-
ria will actually be employed for hiding. A code symbol is
erased at the encoder if the local perceptual criterion for the
block or coefficient is not met. Since we code over entire space
of coefficients that lie in a designated low-frequency band, long
codewords can be constructed to achieve very good correction
ability. A maximum distance separable (MDS) code, such as
Reed Solomon (RS) code, does not incur any penalty for era-
sures at the encoder. Turbo-like codes, which operate very close
to capacity, incur only a minor overhead due to erasures at the
encoder. It should be noted that a deletion, which causes an
erasure, is about half as costly as an insertion, which causes
an error. Hence, it is desirable that the data-hiding scheme be
adjusted in such a manner that there are very few (or no) inser-
tions.

Thus, using a good erasures and errors correcting code, one
can deal with insertions/deletions without a significant decline
in original embedding rate. Reed Solomon codes [20] have
been used for ET scheme and Repeat Accumulate codes [21]
have been used for the SEC scheme as described in following
sections.

B. Reed-Solomon (RS) coding for ET scheme

Reed Solomon codes [20] are MDS codes, such that any k co-
ordinates of an (n,k) RS code can be used to recover the k mes-
sage symbols, so that the code can correct (n-k) erasures, or half
as many errors. The block length n of a Reed-Solomon code
must be smaller than the symbol alphabet. More generally, an
RS code can correct a pattern of e erasures and r errors as long
as e+2r ≤ n−k, which means that errors are twice as costly as
erasures. RS codes use large nonbinary alphabets whose size is

a power of 2, so that each symbol can be interpreted as a block
of bits. This is well-matched to the block-based ET scheme,
where an entire block gets inserted or deleted. Interleaving of
the code symbols is required to deal with block erasures at the
encoder, which tend to occur in bursts. For example, if an en-
tire codeword were placed in a smooth area of the image, all
or most of the symbols would be erased, and it would be im-
possible to decode this particular codeword at the receiver. The
objective of the interleaving is to spread the erasures at the en-
coder as evenly as possible across codewords, so as to ensure
that at least k out of n symbols are received at the decoder with
high probability for each codeword. In particular, codewords
are arranged in an image in such a way that at least certain code
symbols of the codeword are in the center of the image, where
the image is most likely to have details.

Let us consider an example of hiding in a 512×512 im-
age. The image is partitioned into 4096 non-overlapping 8×8
blocks. A (128,32) RS code (i.e., rate 1/4) with symbols of size
7 bits is used. 14 coefficients are used per block. Thus there are
2 code symbols per block, and a total of 64 codewords span-
ning the whole image. The encoder scans the blocks one at a
time, evaluates the entropy in the block, and embeds the two
code symbols corresponding to the block if it passes the en-
tropy threshold test. Otherwise, the code symbols are erased at
the encoder. The rate achieved is computed as follows,

Rate = 64
codewords

image
× 32

symbols
codewords

× 7
bits

symbol
= 14, 336 bits/image

= 0.0547 bits/pixel (bpp)

Reed-Solomon codes are not well matched to AWGN chan-
nels (where they might more typically serve as an outer code
for cleaning up after an inner code matched to the channel), but
are ideal for the purpose of illustrating how to deal with the era-
sures caused by application of local criteria at the encoder and
decoder. We now turn to the SEC scheme, where we consider
powerful binary codes that are well-matched to AWGN attacks,
as well as close to optimal for dealing with erasures.

C. Repeat-accumulate (RA) coding for SEC scheme

Any turbo-like code that operates close to Shannon limit
for the erasures channel, while possessing a reasonable error-
correcting capability, could be used with the SEC scheme. We
used RA codes [21] in our experiments because of their simplic-
ity and near-capacity performance for erasure channels [30].
A rate 1/q RA encoder involves q-fold repetition, pseudoran-
dom interleaving and accumulation of the resultant bit-stream.
Decoding is performed iteratively using the sum-product algo-
rithm [31].

The set of candidate coefficients, which governs the length of
the RA code, lies within a designated low frequency band. Let
us consider an example wherein we want to hide in a 512×512
Lena image. Here, 14 coefficients per block are used (note that
this parameter is independent of the host image), giving us a
total maximum codeword length of 14×4096 = 57,344 for a
512×512 image. It is observed that about 11,000 coefficients
satisfy the zero-threshold test for the Lena image. We choose
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a hiding rate of 1/7, which gives us a payload of 8192 bits.
This input bitstream is coded using rate 1/7 RA code to form
a codeword which is 57,344 bits long. This codeword is now
hidden using the local criteria such that if a coefficient does not
pass the threshold test, the corresponding code symbol is erased
(i.e. not hidden).

V. DECODING

Hard decision decoding is used for JPEG attacks for both
the ET and the SEC schemes. For the case of the RA coded
SEC scheme under AWGN attack, soft decision or probablistic
decoding is employed. It is well known [32] that a soft deci-
sions decoder, leveraging knowledge of attack statistics, out-
performs the hard decisions decoder. Hard decision decoding is
employed for all other attacks in this paper because a detailed
statistical model for these attacks is not available.

A. Hard decision decoding for JPEG attacks

The decoder estimates the location of the embedded data, and
uses hard decisions on the embedded bits in these locations.
The bits in the remaining locations (out of the set of candidate
frequencies) are set to erasures. Since the embedding procedure
of both the ET and the SEC scheme is tuned to JPEG, the de-
coding of embedded data is perfect for all the attacks lesser than
or equal to the design quality factor (QF). The coding frame-
work imparts robustness against insertions/deletions as well as
occasional errors.

B. Soft decision decoding for AWGN attacks

Soft decision decoding can be employed for RA coded SEC
scheme under AWGN attack. The decoder uses the coefficient
threshold to determine whether data has been hidden or not. If
the coefficient exceeds the coefficient threshold, decoder passes
a soft decision statistic computed using (7) to the RA decoder.
Otherwise an erasure (LLR, Λ = 0) is passed. The RA decoder
uses the sum-product algorithm [31] to iteratively decode the
bits. We now illustrate how the coding framework employed for
correcting insertions and deletions, can deal with image tamper-
ing.

C. Image Tampering

The coding framework provides flexibility to the encoder
in choosing the hiding locations. The code symbols that do
not pass the hiding threshold test are erased at the encoder.
The hiding rate is chosen such that it can deal with inser-
tions/deletions as well as errors due to attacks so that the hid-
den data is decoded perfectly. This coding framework can also
deal with image tampering wherein a part of image is replaced
by some other image data. Such a tampering can be local or
global. In order to survive tampering, the code rate used is fur-
ther lowered so that we can deal with the errors caused due
to the replacement of the image data. Note that code rate is
a design parameter shared by encoder and decoder, and hence
if tampering attack is anticipated, then a low enough code rate
should be chosen beforehand.

Once the hidden bitstream is decoded, localization of the
tampered area can be done easily. The decoded bitstream is
encoded using the same RA code parameters, so that the origi-
nally hidden RA coded stream is reconstructed. Next, the loca-
tions in the host image where errors occurred can be found by
comparison. If the host image has undergone tampering, then
most of the errors would be concentrated at the locations where
the tampering was done. Such an ability to robustly decode the
bitstream and then localize the tampered area can be useful in
medical or forensic applications to detect whether a malicious
attacker has tampered with the “evidence”.

VI. HIDING OPTIMIZED FOR AWGN ATTACKS

In this section we present a scalar quantization based hiding
strategy that is specifically tuned to AWGN attacks. The goal is
to compare the achievable rates with the scalar capacity bound
derived in Section II-B and the vector capacity ([11],[15]). Note
that the image adaptive hiding schemes considered so far are
not optimized to AWGN attacks. They use a local criteria, so
that some of the coding effort is ‘used-up’ in dealing with in-
sertions and deletions. Also, the DCT coefficients are divided
by JPEG quantization matrix, which does not provide equal ro-
bustness to all of them against AWGN attacks. In the following
we describe the embedding system, which uses scalar quantiza-
tion based distortion compensated hiding, RA codes, and soft
decision decoding using the statistic derived in Section II-C.

As in the theoretical formulations, the problem is to hide in
a host in such a way that the data hider induces a mean squared
error of at most D1, while the attacker is allowed a maximum
mean squared error of D2. In order to compare with the in-
formation theoretic limits (see, for example, Costa [11] and
Moulin and O’Sullivan [13]), we assume that both the encoder
and the decoder know the D1 and D2 values. We employ the
distortion compensated hiding scheme (Section II-B), which
has been shown in [16] to achieve capacity for some specific
cases. Here, the uniform quantizer is scaled by 1/α, where
α ∈ (0, 1], and the information symbol is encoded as a lin-
ear combination of the host symbol and its quantized value as
in (1). Local criteria are not used, and the quantizer step size
is kept same for all DCT coefficients (as opposed to using the
JPEG quantization matrix). α ∈ (0, 1] is computed using (2)
and is known to both encoder and decoder. RA codes are used
to code the input bitstream to generate a huge codeword. This
codeword is embedded bit-by-bit in all the coefficients within
a designated band using distortion compensation. At the re-
ceiver, the soft decisions are computed using (9) and passed to
the RA decoder which uses the sum-product algorithm [31] to
iteratively decode the bits.

We use this hiding strategy to illustrate that using relatively
simple RA codes with distortion compensated hiding, we can
reach about 2 dB close to the scalar capacity (Section VII).
However, it should be noted that this scheme is not likely to
survive other attacks, and cannot be applied practically unless
the attack is known to be AWGN.

VII. RESULTS

We now show that using the proposed image-adaptive hiding
methods, one can hide a large volume of data with minimal per-
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ceptual degradation. We use peak signal-to-noise ratio (PSNR)
as an objective metric to quantify the quality of the hidden im-
age. PSNR is defined as,

PSNR = 10 log10

(

2552

MSE

)

where MSE stands for average mean squared error between the
original and the given image. Table II shows the number of
bits hidden and the corresponding observed PSNR for various
images with data hidden using uncoded zero-threshold SEC
scheme. Data is hidden in raw (uncompressed) images, and
robustness of these images is characterized by the design QF,
which determines the maximum level of JPEG compression the
images can survive. It is observed that the PSNR of the hid-
den image is significantly higher than that of the corresponding
JPEG compressed image at the same design QF. Note that, the
PSNR is measured with respect to the original uncompressed
image in both the cases. For example, the PSNR of JPEG com-
pressed Baboon image at QF = 25 is 25.89 dB, while a much
higher PSNR of 32.27 dB is observed for the same image with
25,331 bits hidden at a design QF of 25. Similar behavior has
been observed for all the test images. The hidden image quality
can be further improved by using higher threshold SEC scheme,
which provides us with a trade-off between the image quality
and the volume of embedding at a given robustness (determined
by design QF). Table III shows the performance of the higher
threshold SEC scheme for various images at a design QF of 25.
In almost all these cases, it is impossible for a human observer
to tell the hidden image apart from the original one.

We now present the performance of our schemes under vari-
ous attack scenarios. Coding is used in all the attack scenarios
(except JPEG compression where uncoded transmission is good
enough for error free recovery), so that all the hidden bits can
be decoded in spite of the errors due to attack. Note that the
‘number of bits’ reported in the following sections are actually
the ‘number of information bits’ (i.e., the number of bits hidden
before coding). Results for both RS-ET and RA-SEC systems
have been provided for JPEG and AWGN attacks. For all other
attacks, only the RA-SEC system is used. We discuss in Section
VIII why RA-SEC system is preferred.

TABLE II
ZERO-THRESHOLD SEC SCHEME: PSNR AND NUMBER OF BITS HIDDEN

FOR VARIOUS 512×512 IMAGES AT DIFFERENT DESIGN QUALITY

FACTORS. THE NUMBER OF BITS HIDDEN ARE REPORTED FOR UNCODED

HIDING.

QF=25 QF=50 QF=75
Image # bits PSNR # bits PSNR # bits PSNR

(dB) (dB) (dB)
Lena 11,044 34.58 18,786 38.07 31,306 39.90

Peppers 10,447 35.89 18,972 38.03 32,567 39.63
Baboon 25,331 32.27 44,142 34.50 66,911 36.05
Bridge 24,633 32.34 42,615 34.64 63,955 36.32
Couple 15,545 34.05 27,823 36.25 44,227 38.03

Boat 15,234 34.21 26,518 36.47 41,826 38.33

A. JPEG attacks

Since the embedding procedure of both ET and SEC schemes
is tuned to JPEG, the decoding of embedded data is perfect for

TABLE III
HIGHER-THRESHOLD SEC SCHEME: PSNR AND NUMBER OF BITS

HIDDEN FOR VARIOUS 512×512 IMAGES USING DIFFERENT THRESHOLD

VALUES AT DESIGN QF=25. USING HIGHER THRESHOLDS PROVIDE VERY

GOOD QUALITY HIDDEN IMAGES WITH A LOWER VOLUME EMBEDDING.

Thresold = 1 Thresold = 2 Thresold = 3
Image # bits PSNR # bits PSNR # bits PSNR

(dB) (dB) (dB)
Lena 4,913 41.43 2,595 44.58 1,820 46.60

Peppers 5,063 41.12 2,810 44.09 1,976 46.18
Baboon 13,065 35.98 5,763 39.92 3,247 43.27
Bridge 11,403 37.19 5,202 41.03 3,185 43.96
Couple 7,329 39.20 3,751 42.76 2,513 45.18

Boat 6,859 39.39 3,362 42.97 2,264 45.46

all the attacks lesser than or equal to the design quality factor
(QF). Table IV shows the number of bits embedded (with per-
fect recovery) in uncoded and coded ET and SEC schemes at
various design QFs, under JPEG attacks for 512×512 Lena im-
age.

TABLE IV
PERFORMANCE OF CODED AND UNCODED ET AND SEC SCHEMES UNDER

JPEG ATTACKS AT VARIOUS QUALITY FACTORS

attack ET scheme SEC scheme
compr. # of bits # of bits

QF (bpp) uncoded coded uncoded coded
25 0.42 6,240 4,608 11,044 7,168
50 0.66 15,652 12,096 18,786 13,824
75 1.04 34,880 30,560 31,306 23,893

B. AWGN attacks

Table V summarizes the results for the ET scheme with RS
coding and SEC scheme with RA coding against AWGN attack.
The number of bits embedded is listed for the 512×512 Lena
image. The ‘attack power’ reported here is the actual power
of the added noise converted to the dB scale (i.e., the ratio of
variance of the added noise to that of a Gaussian with unit vari-
ance). Although the RS code is not the best choice for AWGN,
it is adequate for mild attacks. RA-coded SEC scheme uses
soft decision statistic of the AWGN for decoding (as in (8) in
Section II-B), and performs better than RS coded ET system
at higher attack powers. A worst case attack D2 is assumed
by the decoder to compute the soft-decision statistic, and the
hidden image is also attacked at the same D2. Note that if the
actual attack is lesser than D2, the performance would at least
be as good as the one reported here.

C. Wavelet compression attacks

Wavelet compression (JPEG 2000) was used to attack the im-
ages with hidden data using SEC scheme with RA coding. Ta-
ble VI gives the number of bits hidden in 512×512 Lena image
under various levels of attack compression. Data was hidden
in the image using SEC scheme at design quality factor of 25,
and 20 coefficients were used per block, scanned in the zig-
zag fashion. The JPEG 2000 compression was done using the
Jasper codec [33].
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TABLE V
PERFORMANCE OF ET SCHEME WITH RS CODING AND SEC SCHEME

WITH RA CODING UNDER AWGN ATTACK. FOR THE ET SCHEME, ONE

CODEWORD (8 BITS LONG) IS HIDDEN PER BLOCK. 20 AC COEFFICIENTS

CONSTITUTE THE CANDIDATE EMBEDDING BAND FOR THE SEC SCHEME.

Attack ET Scheme SEC Scheme
power # of RS code # of RA code
(dB) bits (n,k) bits (1/q)
10.0 7,040 (256,55) 7,447 1/11
12.5 6,528 (256,51) 6,826 1/12
15.0 3,584 (256,28) 6,301 1/13

TABLE VI
PERFORMANCE OF RA CODED SEC SCHEME FOR 512×512 LENA IMAGE

UNDER WAVELET COMPRESSION ATTACK

Attack Compression Hiding Rate RA code rate
(bpp) # of bits (1/q)
0.800 7,447 1/11
0.530 4,096 1/20
0.400 2,730 1/30

D. Image Tampering

The hiding schemes presented here are resilient to image
tampered in various ways. Table VII gives the number of bits
hidden in 512×512 Lena image when a part of host image is
replaced by other image data. Figure 3(a) shows an example at-
tacked image where 20% of the image is cropped out and new
image data is put in that place. The hidden data can be decoded
even if the tampering is not localized. Figure 3(b) shows Lena
image tampered globally, and still all the 6,301 hidden bits can
be recovered successfully. Figure 3 (c) shows the localization
results for the tampered image of Figure 3 (b).

E. Image Resizing

Image resizing is a popular attack method wherein the im-
age is shrunk to a smaller size and scaled back to its original
size so that there is loss of information in the process without
causing significant perceivable distortion. Various interpolation
methods can be used to resize and the most popular ones are bi-
linear, bicubic and nearest neighbor interpolations. Again, the
RA coded SEC scheme is used for hiding in 512×512 Lena im-
age at design quality factor of 25 and 20 coefficients are used

TABLE VII
PERFORMANCE OF RA CODED SEC SCHEME FOR 512×512 LENA IMAGE

UNDER IMAGE TAMPERING. HERE, 27 COEFFICIENTS ARE USED PER

BLOCK

Percentage of Number RA code rate
image tampered of bits (1/q)

10 % 9,216 1/12
20 % 5,820 1/19
30 % 4,608 1/24

TABLE VIII
PERFORMANCE OF RA CODED SEC SCHEME FOR 512×512 LENA IMAGE

UNDER IMAGE RESIZING ATTACK USING BICUBIC INTERPOLATION

Percentage Hiding Rate RA code rate
Resizing # of bits (1/q)

10 % 7,447 1/11
15 % 6,826 1/12
20 % 6,301 1/13

TABLE IX
PERFORMANCE OF RA CODED SEC SCHEME FOR 512×512 LENA IMAGE

UNDER IMAGE RESIZING ATTACK USING BILINEAR AND NEAREST

NEIGHBOR INTERPOLATION

Nearest neighbor interpolation Bilinear interpolation
Percentage Number of RA code Number of RA code
Resizing bits (1/q) bits (1/q)

2 % 6,301 1/13 2,275 1/36
5 % 4,096 1/20 2,155 1/38
10 % 2,275 1/36 1,241 1/66

per block. The hidden image survives large amount of resiz-
ing using bicubic interpolation method. Table VIII gives the
number of bits hidden against the percentage of resizing done
using bicubic interpolation. Less data can be hidden when hid-
den image is resized using other interpolation techniques. Table
IX gives the number of bits hidden against bilinear and nearest
neighbor resizing attacks. It should be noted that the perceptual
quality of the attacked image is also worse in the latter cases,
which forbids the attacker from using a higher percentage of
resizing with bilinear or nearest neighbor interpolation.

F. Image-in-Image hiding

In steganographic applications it is desirable to hide an im-
age called signature image into another image called host or
cover image. The hiding techniques developed here allows us
to hide large volume of data with perfect recovery and hence
can be used to hide large signature images with robustness
against JPEG attacks. For example, signature images as large as
256×256 pixels can be hidden in a 512×512 cover image (Fig-
ure 4). The uncoded scheme is employed here, because we need
robustness only against JPEG compression and higher embed-
ding rate is desirable. First, the maximum number of bits that
can be hidden in the host image is determined by going through
the image and computing the number of coefficients that satisfy
the local criteria at desired design quality factor. Then, the sig-
nature image is hidden after being JPEG compressed to a level
that its size is smaller than the maximum number of bits that
can be hidden.

G. AWGN optimized hiding

For the AWGN optimized hiding scheme discussed in Sec-
tion VI, we found the minimum distortion to noise ratio (DNR)
for which decoding was perfect for a 512×512 image at various
RA code rates. Table X compares the DNR observed for simple
scalar quantization based hiding (α = 1), and distortion com-
pensated scalar quantization hiding with optimal α (= D1

D1+D2
)
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(a) 20 % of 512×512 Lena image tampered (b) 512×512 Lena image tampered globally

(c) Localization of tampered area at the decoder for the
globally tampered image above

Fig. 3. Global and Localized image tampering and localization of the tampered area

to the theoretical scalar (Section II-B) and vector [15] capaci-
ties.

We observe that we are only about 2 dB away from the the-
oretical scalar capacity using distortion compensated quantiza-
tion based hiding with RA coding. Most of this gap is probably
due to the limits on the performance of the regular RA codes,
which exhibit gaps of comparable size (e.g., about 1.5 dB for
rate 1/3) from the Shannon limit over the classical AWGN chan-
nel as well [21]. An interesting question for future study is
whether this gap can be closed further using more powerful
codes such as regular and irregular LDPCs [34], [35] and ir-
regular RA codes [30], known to work close to the Shannon
limit over the AWGN channel. Another significant observa-
tion is that there is a gain of more than 2 dB when distortion

TABLE X
COMPARISON OF OBSERVED AND THEORETICAL CAPACITIES

Scalar quant. Theoretic Capacity
RA code schemes, DNR (dB) DNR (dB)

rate (α = 1) (opt. α) Scalar Vector
1/3 4.3180 2.1261 0.2500 -2.3107
1/4 3.2790 0.8365 -1.0000 -3.8278

compensation scheme is used as compared to the performance
without distortion compensation (α = 1).
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(a) Original 512×512 Harbor image (b) Composite image

(c) Original 256×256
signature image

(d) Recovered signature
image

Fig. 4. Image-in-Image hiding example

VIII. DISCUSSION

The hiding methods presented in this paper are geared to-
wards high volume embedding while preserving the perceptual
quality and achieve robustness against JPEG attacks. It should
be noted that we use ET scheme with RS coding mainly to ex-
plain our ideas of local adaptation and coding framework, while
in most practical scenarios, the RA coded SEC scheme is used.
The RA-SEC system provides a better performance in terms of
robustness and perceptual quality. This is because the turbo-
like RA codes operate operate very close to the capacity, and
the SEC scheme provides a better control on ‘where to hide
data’. Soft decision decoding of the RA codes is performed for
AWGN attack, and hard decision decoding is performed other-
wise.

While the AWGN attack is not common in the watermark-
ing literature, it has been shown in information-theoretic stud-
ies ([14],[15]) to be the worst-case attack in certain idealized
game-theoretic settings, where the mean squared distortion due
to the attack is constrained. The information-theoretic “good-
ness” of our schemes is therefore demonstrated by our numeri-

cal results that show that, by appropriate use of soft decisions,
we do approach the information-theoretic hiding capacity (with
scalar quantization) under AWGN attacks. Of course, from a
practical point of view, hard decisions must be employed for
attacks (such as compression) whose statistics are difficult to
quantify. Also, there are many attacks that induce large mean-
squared distortion, but little perceptual distortion. Examples
include Stirmark random bending [4], rotation, cropping, and
print-scan. These geometric attacks tend to de-synchronize the
decoder. Modifications to the current hiding framework so that
it allows re-synchronization of the decoder for these attacks is
an avenue of future work.

It can be seen that the proposed hiding schemes survive
wavelet based compression and image resizing attacks. This
is because these attacks do not entirely destroy the low fre-
quency DCT coefficients where the majority of bits have been
hidden. Note that wavelet-based compression does not change
the image mean squared error drastically (as opposed to geo-
metric attacks). Hence, based on the arguments of the previous
paragraph, it is not surprising that the hidden bits survive this



13

attack. The same arguments hold true for the image resizing
attack when the original image size is known to the decoder, or
if the attacker scales the image back to its original size. In spite
of this restriction, the presented results are significant because
they indicate that the hidden bits can survive errors caused due
to interpolation.

The image-in-image hiding presented here uses the fact that
we can send a high volume of data with robustness against
JPEG compression using uncoded SEC scheme. The signa-
ture image is compressed into a sequence of bits and these
bits are hidden into the host (disregarding the actual meaning
of the bits). The system is designed for the worst anticipated
attack. In practice, the attack level is seldom known apriori,
and if the actual attack is less severe than the design attack, we
are still struck with the design signature image quality. Ide-
ally, we would like an image-in-image hiding scheme that re-
sults in graceful improvement in the image quality with less
severe attacks. Such schemes require joint source-channel cod-
ing, which has been studied for the Gaussian channel (see, for
example, [36], [37]). Development of similar techniques for
data hiding is an important research area. A first attempt at
building such gracefully improving image-in-image hiding sys-
tem is presented in [38], where a hybrid digital-analog (joint
source-channel) coding scheme is proposed. It leverages the
current image-adaptive hiding framework for sending digital
data and involves transmission of the analog residues using a
new method.
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