
PATENT APPLICATION

Attorney Docket No. 3112-2

1

SUPERVISED GRAPH LEARNING

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims the benefit of and priority to U.S. Provisional

Application No. 63/244,781, filed September 16, 2021, which is hereby incorporated by reference

herein in its entirety.

TECHNICAL FIELD

[0002] The present disclosure relates to machine learning and, more particularly, to supervised

graph learning that creates a probabilistic graph, without any predetermined graph structure, using

training data.

BACKGROUND

[0003] A graph is a data structure that includes nodes and edges. There are many different

types of graphs, such as undirected graphs, directed graphs, hypergraphs, graphs with self-edges,

graphs without self-edges, and/or bipartite graphs, among others. Graphs are applicable to

widespread numbers and types of applications, including classification tasks, for example.

SUMMARY

[0004] The present disclosure relates to supervised graph learning that creates a probabilistic

graph, without any predetermined graph structure, using training data. The present disclosure

provides an improvement to technology in the machine learning field and creates graph models

that have no predetermined structure prior to the training. The graph models created by the

disclosed technology can be applied to new observed data to make predictions/inferences. Unless

indicated otherwise by context, the terms “inference” and “prediction” may be used

interchangeably herein.

PATENT APPLICATION

Attorney Docket No. 3112-2

2

[0005] In accordance with aspects of the present disclosure, a system includes one or more

processors and at least one memory storing instructions. The instructions, when executed by the

one or more processors, cause the system to access training data relating to a plurality of variables,

determine a factor graph model based on the training data where the factor graph model includes

component factors, estimate probability density functions for the component factors based on

Monte Carlo integration in frequency domain, and provide the factor graph model with the

estimated probability density functions for the component factors.

[0006] In various embodiments of the system, in determining the factor graph model, the

instructions, when executed by the one or more processors, cause the system to determine low-

order moments based on the training data.

[0007] In various embodiments of the system, in determining the factor graph model, the

instructions, when executed by the one or more processors, cause the system to identify subsets of

dependent variables based on the low-order moments.

[0008] In various embodiments of the system, in identifying the subsets of dependent

variables, the instructions, when executed by the one or more processors, cause the system to

compare whether joint variable moments deviate from products of individual variable moments.

[0009] In various embodiments of the system, in determining the factor graph model, the

instructions, when executed by the one or more processors, cause the system to create factor nodes

corresponding to the subsets of dependent variables and adding edges from the factor nodes to

corresponding variable nodes.

[0010] In various embodiments of the system, in estimating probability density functions for

the component factors, the instructions, when executed by the one or more processors, cause the

PATENT APPLICATION

Attorney Docket No. 3112-2

3

system to estimate functional forms of the probability density functions for the component factors

using Fourier domain synthesis.

[0011] In various embodiments of the system, in estimating probability density functions for

the component factors, the instructions, when executed by the one or more processors, cause the

system to estimate the probability density functions for the component factors using the functional

forms, joint variable moments, and direct Monte Carlo integration in the frequency domain.

[0012] In various embodiments of the system, the instructions, when executed by the one or

more processors, further cause the system to apply the factor graph model with the estimated

probability density functions for the component factors to observed variables to make an inference.

[0013] In accordance with aspects of the present disclosure, a method includes accessing

training data relating to a plurality of variables, determining a factor graph model based on the

training data where the factor graph model includes component factors, estimating probability

density functions for the component factors based on Monte Carlo integration in frequency

domain, and providing the factor graph model with the estimated probability density functions for

the component factors.

[0014] In various embodiments of the method, determining the factor graph model includes

determining low-order moments based on the training data.

[0015] In various embodiments of the method, determining the factor graph model includes

identifying subsets of dependent variables based on the low-order moments.

[0016] In various embodiments of the method, identifying the subsets of dependent variables

includes comparing whether joint variable moments deviate from products of individual variable

moments.

PATENT APPLICATION

Attorney Docket No. 3112-2

4

[0017] In various embodiments of the method, determining the factor graph model includes

creating factor nodes corresponding to the subsets of dependent variables and adding edges from

the factor nodes to corresponding variable nodes.

[0018] In various embodiments of the method, estimating the probability density functions for

the component factors includes estimating functional forms of the probability density functions for

the component factors using Fourier domain synthesis.

[0019] In various embodiments of the method, estimating the probability density functions for

the component factors includes estimating the probability density functions for the component

factors using the functional forms, joint variable moments, and direct Monte Carlo integration in

the frequency domain.

[0020] In various embodiments of the method, the method includes applying the factor graph

model with the estimated probability density functions for the component factors to observed

variables to make an inference.

[0021] In accordance with aspects of the present disclosure, a non-transitory computer-

readable medium stores instructions which, when executed by a computer, causes the computer to

perform a method that includes accessing training data relating to a plurality of variables,

determining a factor graph model based on the training data where the factor graph model includes

component factors, estimating probability density functions for the component factors based on

Monte Carlo integration in the frequency domain, and providing the factor graph model with the

estimated probability density functions for the component factors.

[0022] In accordance with aspects of the present disclosure, a method includes: accessing

training data relating to a plurality of variables; determining a probabilistic graph model based on

the training data, where the probabilistic graph model includes nodes and edges deduced from the

PATENT APPLICATION

Attorney Docket No. 3112-2

5

training data and where the probabilistic graph model has no predetermined structure prior to the

nodes and edges being deduced; estimating probabilistic parameters of the probabilistic graph

model using the training data; and applying the probabilistic graph model with the estimated

probabilistic parameters to new observed data to make a prediction.

[0023] In various embodiments of the method, the probabilistic graph model is a factor graph

model.

[0024] Further details and aspects of exemplary embodiments of the present disclosure are

described in more detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] FIG. 1 is a flow diagram of an exemplary operation, in accordance with aspects of the

present disclosure;

[0026] FIG. 2 is a diagram of an exemplary factor graph corresponding to an error correction

system, in accordance with aspects of the present disclosure;

[0027] FIG. 3 is a diagram of exemplary matrices relating to the error correction system, in

accordance with aspects of the present disclosure;

[0028] FIG. 4 is a diagram of exemplary computations relating to sum-product algorithm, in

accordance with aspects of the present disclosure;

[0029] FIG. 5 is a diagram of further exemplary computations relating to sum-product

algorithm, in accordance with aspects of the present disclosure;

[0030] FIG. 6 is a diagram of exemplary bit error rate curves, in accordance with aspects of

the present disclosure;

[0031] FIG. 7 is a diagram of exemplary parameters relating to neural network

implementations, in accordance with aspects of the present disclosure; and

PATENT APPLICATION

Attorney Docket No. 3112-2

6

[0032] FIG. 8 is a block diagram of exemplary components of a computing system, in

accordance with aspects of the present disclosure.

DETAILED DESCRIPTION

[0033] The present disclosure relates to supervised graph learning that creates a probabilistic

graph, without any predetermined graph structure, using training data. The present disclosure

provides an improvement to technology in the machine learning field and creates graph models

that have no predetermined structure prior to the training. The graph models created by the

disclosed technology can be applied to new observed data to make predictions/inferences.

[0034] A system may be characterized by variables. For example, a system for predicting

temperature may have variables such as location (e.g., longitude and latitude), time of year (e.g.,

number of days since start of the year), time of day, weather conditions (e.g., sunny, rainy, etc.),

and traffic congestion level, among other variables. Systems for other applications have other

variables. In various embodiments, a system variable may be a variable that is observable (e.g.,

measured by a sensor) or a variable that is not observable but may be computed, e.g., a variable

whose value is to be predicted.

[0035] As mentioned above, a graph is a data structure that includes nodes and edges. As used

herein, a “probabilistic graph” is a graph that models statistical relationships within a system of

variables, such as statistical relationships between system inputs and system outputs or statistical

relationships between variables or subgroups of variables of the system.

[0036] One example of a probabilistic graph is a factor graph. A factor graph is a bipartite

graph, in which (a) there are two-types of nodes: variable nodes and factor nodes, and (b) edges of

the graph connect only to nodes of different type (i.e., edges connect only variable nodes to factor

nodes). The variable nodes represent the variables of the system, and the factor nodes represent

PATENT APPLICATION

Attorney Docket No. 3112-2

7

the component factors (local statistical dependence) of the global system. Edges of the factor graph

connect factor nodes to variable nodes if and only if the corresponding factor is a function of the

corresponding variable.

[0037] The disclosed technology is generally applicable to probabilistic graphs. Factor graphs

are used as the primary example, but it is intended that any disclosure herein relating to factor

graphs may be applied to probabilistic graphs.

[0038] The present disclosure improves the technology of the information theory, artificial

intelligence, and machine learning disciplines. In accordance with aspects of the present

disclosure, the disclosed technology realizes a generalized graph-based framework for automated

learning in intelligent systems. Aspects of the present disclosure provide automatic graph learning

framework employs factor graphs to represent any stochastic system of variables and factorized

realizations of their joint probability density function. Algorithms are disclosed that are capable of

learning statistical relationships between system variables, which, in various embodiments,

involves constructing an appropriate factor graph representation and generating estimates of its

component probability density functions, from training data.

[0039] As used herein, the terms “automatic graph learning” and “supervised graph learning”

may be used interchangeably to refer to machine learning that uses training data to create a

probabilistic graph that represents a stochastic system of variables, including factor graphs which

represent factorized realizations of joint probability density functions of system variables. Unlike

machine learning using neural networks (NN), which trains a predetermined network having a

predetermined structure, the automatic graph learning of the present disclosure does not start with

any predetermined graph structure. Although graphical structure is a basic characteristic of neural

networks, there is a disconnect between the NN model and probability law governing its variables

PATENT APPLICATION

Attorney Docket No. 3112-2

8

or features. Specific instances of neural networks such as convolutional neural networks and

recurrent neural networks have demonstrated a high degree of success in several areas including

object recognition and natural language processing. However, there is no generalized NN or NN-

based framework that could be applied to any learning system. Unlike neural networks, and as

described in more detail below, the probabilistic graphs created by the automatic graph learning

disclosed herein can result in any structure deduced from the training data.

[0040] Aspects of the disclosed technology use probability and information theory for

modeling stochastic systems and implementing probabilistic inference algorithms and use

supervised learning, i.e., training-based learning from principles of probability theory. As

described above, a graph model for the system in question is a priori unknown, and training data

is used to deduce an appropriate probabilistic graph model and, in the case of factor graphs,

functional approximation of its component factors. The developed methodology is general in the

sense that it can be applied to any data system, wherein a suitable probabilistic graph model is

automatically learned from training data and inference computations are performed on the learned

graph. In the case of factor graph system models, and given a characterization of is component

factors, an instance of the sum-product algorithm can be used to compute marginal densities, such

as the a posteriori probabilities, on non-observed system variables.

[0041] In accordance with aspects of the present disclosure, the disclosed technology provides

a generalized learning framework that captures statistical structure between a system of variables.

Using factor graphs as an example, the disclosed automatic graph learning/supervised graph

learning uses empirical estimates of low-order statistical moments to (i) select dependent subsets

of variables to construct a system factor graph model and (ii) generate estimates of the functional

form of the resulting factors via Fourier domain synthesis. Given the factor graph model and

PATENT APPLICATION

Attorney Docket No. 3112-2

9

functional characterization of its component factors, the sum-product algorithm is then used to

implement probabilistic inference computations.

[0042] In contrast to techniques which select the best model from a predefined set of candidate

models, the present disclosure builds a unified framework in which an appropriate probabilistic

graph model for representing and processing inference for a system of data is automatically learned

from training data. As explained in more detail later herein, the disclosed technology imposes no

constraint on the family of densities used to model the posterior density, factor densities, or other

densities that arise in belief propagation. Furthermore, as explained later herein, instead of

truncating the Fourier series of factor density functions, the disclosed technology uses the

relationship of Fourier coefficients to statistical moments to form estimates of the component

factors based on truncated orders of moments. As persons skilled in the art will understand,

statistical moments are a set of parameters that measure a probability distribution, such as the first

four moments: mean, variance, skew and kurtosis. Higher order moments, as well as joint moments

involving multiple random variables, are utilized in this disclosure for completely characterizing

the joint probability distribution function of subsystems of random variables.

[0043] The disclosed technology further leverages direct Monte Carlo integration of the joint

density function in the Fourier domain. The disclosed technology also uses training data to estimate

statistical moments via Monte Carlo integration, and the methods are more general because they

do not assume that the output is in the form of statistical expectation. Rather, the disclosed

technology estimates the density functions directly in the Fourier domain and uses the relationship

of the Fourier coefficients to statistical moments. Accordingly, the present disclosure applies a

statistical moments-based approach for constructing probabilistic graphical models.

PATENT APPLICATION

Attorney Docket No. 3112-2

10

[0044] In accordance with aspects of the present disclosure, the disclosed technology enables

learning a factor graph model representative of statistical relationships between a system of

variables. In various embodiments, a factor graph model can be learned by using estimates (from

training data) of low-order statistical moments. For example, subsets of variables of a system may

be tested for dependence, based on the estimated moments from training data, by checking whether

their joint moments deviate from the product of their individual moments. Dependent subsets can

be selected to construct a factor graph for the system of variables. Graphically, this amounts to

creating factor nodes corresponding to the selected subsets of variables and adding edges from the

factor nodes to their corresponding variable nodes, to thereby create a factor graph.

[0045] In accordance with aspects of the present disclosure, after a factor graph model is

learned, the disclosed technology may determine probability density functions of the component

factors. In various embodiments, estimates of component factor probability density functions may

be generated using Fourier domain representations and Monte Carlo integration. Fourier

coefficients have a relationship to statistical moments. Because component factors were

determined using low-order statistical moments, and statistical moments have a relationship with

Fourier coefficients, Fourier domain synthesis may be used to estimate the functional form of the

component factor probability density functions. Using the Fourier transform synthesis equation,

estimates of the component factor probability density functions can be determined using estimates

of the joint statistical moments between the system variables or by leveraging direct Monte Carlo

integration of the joint density function in the Fourier domain, as described in subsequent sections.

[0046] The result of such operations are a learned factor graph model with estimated

probability density functions for the component factors. Because the factor graph model is learned

PATENT APPLICATION

Attorney Docket No. 3112-2

11

from training data, the operations of the present disclosure are referred to herein as “supervised

graph learning.”

[0047] Accordingly, supervised graph learning provides a factor graph model with estimated

probability density functions for the component factors. To apply the learned factor graph model

to observed variables to make an inference, an instance of the sum-product algorithm can be

implemented to process the observed variables and make an inference.

[0048] Accordingly, supervised graph learning and using the sum-product algorithm to apply

a learned factor graph to observed variables are disclosed herein.

[0049] The disclosed technology uses training data to learn a factor graph model of the data

system and develops estimates of the factor probability density functions (PDFs). A “probability

density function” is a term of art. As persons skilled in the art will understand, a probability density

function is non-negative everywhere, and its integral over the entire space is equal to one. A PDF

can be used to specify the probability of the random variable falling within a particular range of

values. As explained below, the estimates of the factor density functions are built using estimates

of the joint statistical moments between the system variables and Monte Carlo integration. The

disclosed techniques leverage the theorem below, which is described using continuous-time

Fourier transforms. Persons skilled in the art will understand how to apply the disclosed techniques

using discrete-time Fourier transforms and Fast Fourier Transforms, among other Fourier

transform implementations.

[0050] Theorem 1

[0051] The joint PDF of 𝑋𝑋 and 𝑌𝑌, denoted 𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦), is uniquely determined by its joint

statistical moments, 𝐸𝐸[𝑋𝑋𝑚𝑚𝑌𝑌𝑛𝑛], for all 𝑚𝑚 = 1,2,3 … and 𝑛𝑛 = 1,2,3, ….

PATENT APPLICATION

Attorney Docket No. 3112-2

12

[0052] Proof

[0053] The theorem follows from substituting the Taylor expansion of the complex

exponential in the multivariate Fourier transform of the joint PDF 𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦).

[0054] The PDF of 𝑋𝑋 and 𝑌𝑌 can be expressed as:

𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦) = � � 𝐹𝐹𝑋𝑋𝑋𝑋(ω1,ω2)𝑒𝑒𝑖𝑖2π(ω1𝑥𝑥+ω2𝑦𝑦)
∞
−∞

∞
−∞ 𝑑𝑑ω1𝑑𝑑ω2,

EQUATION 1

where 𝐹𝐹𝑋𝑋𝑋𝑋(𝜔𝜔1,𝜔𝜔2) denotes the two-dimensional Fourier transform of 𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦):

𝐹𝐹𝑋𝑋𝑋𝑋(ω1,ω2) =
1

(2π)2� � 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑒𝑒−𝑖𝑖2π(ω1𝑥𝑥+ω2𝑦𝑦)
∞
−∞

∞
−∞ 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 =

1

(2π)2 𝐸𝐸�𝑒𝑒−𝑖𝑖2π(ω1𝑋𝑋+ω2𝑋𝑋)�
=

1

(2π)2 � �(−𝑖𝑖2π)𝑚𝑚+𝑛𝑛ω1𝑚𝑚𝑚𝑚!

∞
𝑛𝑛=0

ω2𝑛𝑛𝑛𝑛!

∞
𝑚𝑚=0 𝐸𝐸[𝑋𝑋𝑚𝑚𝑌𝑌𝑛𝑛].

EQUATION 2

Hence, assuming convergence of the integrals in Equation 1 and Equation 2, the PDF 𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦) is

expressed in terms of its joint moments 𝐸𝐸[𝑋𝑋𝑚𝑚𝑌𝑌𝑛𝑛] for all 𝑚𝑚 > 0 and 𝑛𝑛 > 0.

[0055] Corollary 1

[0056] The random variables 𝑋𝑋 and 𝑌𝑌 are independent if and only if the following equation

holds for all values of 𝑚𝑚 > 0 and 𝑛𝑛 > 0: 𝐸𝐸[𝑋𝑋𝑚𝑚𝑌𝑌𝑛𝑛] = 𝐸𝐸[𝑋𝑋𝑚𝑚]𝐸𝐸[𝑌𝑌𝑛𝑛].

EQUATION 3

[0057] Proof

[0058] For 𝑋𝑋 and 𝑌𝑌 independent, we have 𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦) = 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑓𝑓𝑋𝑋(𝑦𝑦), which implies that 𝐹𝐹𝑋𝑋𝑋𝑋(𝜔𝜔1,𝜔𝜔2) = 𝐹𝐹𝑋𝑋(𝜔𝜔1)𝐹𝐹𝑋𝑋(𝜔𝜔2) and thus we can write the following:

PATENT APPLICATION

Attorney Docket No. 3112-2

13

𝐸𝐸[𝑋𝑋𝑚𝑚𝑌𝑌𝑛𝑛] =
(2π)2

(−𝑖𝑖2π)𝑚𝑚+𝑛𝑛 ∂𝑚𝑚+𝑛𝑛𝐹𝐹𝑋𝑋𝑋𝑋(ω1,ω2)∂𝑚𝑚ω1 ∂𝑛𝑛ω2 �ω1=0,ω2=0

=
(2π)2

(−𝑖𝑖2π)𝑚𝑚+𝑛𝑛 𝑑𝑑𝑚𝑚𝐹𝐹𝑋𝑋(ω1)𝑑𝑑𝑚𝑚ω1 �ω1=0 𝑑𝑑𝑛𝑛𝐹𝐹𝑋𝑋(ω2)𝑑𝑑𝑛𝑛ω2 �ω2=0

= 𝐸𝐸[𝑋𝑋𝑚𝑚]𝐸𝐸[𝑌𝑌𝑛𝑛],

where we have assumed that the appropriate conditions for interchanging the order of

differentiation and expectation hold true.

[0059] Conversely, substituting 𝐸𝐸[𝑋𝑋𝑚𝑚𝑌𝑌𝑛𝑛] = 𝐸𝐸[𝑋𝑋𝑚𝑚]𝐸𝐸[𝑌𝑌𝑛𝑛] in Equation 2 yields 𝐹𝐹𝑋𝑋𝑋𝑋(𝜔𝜔1,𝜔𝜔2) = 𝐹𝐹𝑋𝑋(𝜔𝜔1)𝐹𝐹𝑋𝑋(𝜔𝜔2) and thus 𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦) = 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑓𝑓𝑋𝑋(𝑦𝑦).

[0060] The above results extend to larger multivariate PDFs, wherein the joint statistical

moments must be taken between all combinations of exponents and variables. A result of Corollary

1 is that if Equation 3 does not hold true for any 𝑚𝑚 and 𝑛𝑛, then 𝑋𝑋 and 𝑌𝑌 must be dependent random

variables—a property that may be used to check for dependence among subsets of system

variables.

[0061] In accordance with aspects of the present disclosure, statistical moments estimated

from training data are used to select dependent subsets of system variables and, thus, a factorization

of the system PDF, as in Equation 4 below. Equation 2 can then be used to estimate the functional

form of the component factors. Assuming a stationary system (joint statistics are time-invariant),

and independent identically distributed (IID) training data (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1, … ,𝑇𝑇, we have the

following empirical estimates for the joint moments of 𝑋𝑋 and 𝑌𝑌:

𝐸𝐸[𝑋𝑋𝑚𝑚𝑌𝑌𝑛𝑛] = lim𝑇𝑇→∞ 1𝑇𝑇�𝑥𝑥𝑖𝑖𝑚𝑚𝑦𝑦𝑖𝑖𝑛𝑛𝑇𝑇
𝑖𝑖=1 , 0 < 𝑚𝑚,𝑛𝑛 < ∞,

PATENT APPLICATION

Attorney Docket No. 3112-2

14

which follows from the law of large numbers. In various embodiments, reduced complexity

estimates can be obtained by using only low order, low degree moments to select factors and to

estimate Equation 2.

[0062] Since the component factors of the system posterior density depend only on subsets of

system variables, the complexity of joint PDF estimation is reduced. Moreover, inference

processing using the sum-product algorithm benefits from small factor size in terms of complexity

and performance.

[0063] The disclosed technology, with respect to factor graphs, can be viewed as having three

phases: 1. factor selection, 2. factor density estimation, and 3. execution of the sum-product

algorithm with the learned model to make inferences based on new data. These phases are

described in detail below.

[0064] Referring FIG. 1, there is shown a flow diagram of an operation for using supervised

learning to create a factor graph without any predetermined graph structure and for applying the

factor graph to new data to make inferences. Factor graphs are used as an example, and it will be

understood that aspects of the present disclosure are applicable to probabilistic graphs in general.

[0065] At block 110, the operation involves accessing training data for variables of a data

system to be modeled. The training data includes data for observable system variables. In various

embodiments, the training data includes data for non-observable system variables.

[0066] At block 120, the operation involves processing the training data to identify subsets of

system variables that are dependent. The operations of block 120 encompass the factor selection

phase mentioned above. In this phase, subsets of variables can be tested for dependence by

determining empirical moments from training data and dependent subsets are selected to construct

a factor graph for the system of variables. Graphically, this amounts to creating a set of factor

PATENT APPLICATION

Attorney Docket No. 3112-2

15

nodes corresponding to the selected subsets of variables and adding edges from the factors to their

corresponding variable nodes.

[0067] In accordance with aspects of the present disclosure, a technique to select factors

follows from Corollary 1. In particular, the operation identifies dependent subsets of variables by

checking how much their joint moments, measured from training data, deviate from the product of

their individual moments. For example, if 𝑉𝑉1 and 𝑉𝑉2 represent dependent system variables, then

there exists a pair of exponents (𝑚𝑚,𝑛𝑛) such that 0 < Δ𝑚𝑚𝑛𝑛 ≜ |𝐸𝐸[𝑉𝑉1𝑚𝑚𝑉𝑉2𝑛𝑛] − 𝐸𝐸[𝑉𝑉1𝑚𝑚]𝐸𝐸[𝑉𝑉2𝑛𝑛]|. A larger

deviation Δ𝑚𝑚𝑛𝑛 from zero indicates a greater degree of confidence that the variables exhibit

dependence. Thus the Δ𝑚𝑚𝑛𝑛 serve as a metric for ranking dependent subsets. In the case of binary

data, 𝐸𝐸[𝑉𝑉1𝑚𝑚𝑉𝑉2𝑛𝑛] = 𝐸𝐸[𝑉𝑉1𝑉𝑉2] for all 𝑚𝑚 and 𝑛𝑛 greater than zero. Hence, for binary data, it suffices to

measure only the first order moments. In general, all orders of joint moments must be determined

to fully characterize the joint probability density function of the subsystem of random variables,

but there are exceptions, such as the binary case noted above and the Gaussian case which is fully

characterized by its first and second order moments. However, heuristic criteria can be used to

limit the search space, as described below.

[0068] In various embodiments, the training data may be normalized to have zero mean and

unit variance. Letting 𝑣𝑣𝑖𝑖[1], … , 𝑣𝑣𝑖𝑖[𝑇𝑇] denote 𝑇𝑇 realizations of the random variable 𝑉𝑉𝑖𝑖, the operation

can set: �̅�𝑣𝑖𝑖[𝑡𝑡] = 𝜎𝜎𝑖𝑖−1(𝑣𝑣𝑖𝑖[𝑡𝑡] − 𝜇𝜇𝑖𝑖), where 𝜇𝜇𝑖𝑖 = 𝑇𝑇−1∑𝑣𝑣𝑖𝑖[𝑡𝑡] and 𝜎𝜎𝑖𝑖2 = 𝑇𝑇−1∑(𝑣𝑣𝑖𝑖[𝑡𝑡] − 𝜇𝜇𝑖𝑖)2. The

operation then constructs the metrics Δ𝑖𝑖𝑖𝑖 = �𝑇𝑇−1∑�̅�𝑣𝑖𝑖[𝑡𝑡]�̅�𝑣𝑖𝑖[𝑡𝑡]� and identifies those that exceed a

predetermined threshold value. In various embodiments, the operation can add degree-three factors

whose joint empirical moments exceed another predetermined threshold value. Hence, the

operation can identify deviations of the joint moments from the product of their individual

PATENT APPLICATION

Attorney Docket No. 3112-2

16

moments over the ensemble and determine thresholds {𝜏𝜏𝑑𝑑} for detecting variable dependence per

degree of subset 𝑑𝑑.

[0069] In various embodiments, due to the combinatorial complexity of factor detection for

massive systems, heuristic criteria can be used to limit the search space for candidate variable

subsets, such as those described above. In various embodiments, low-order/low-degree statistical

moments (e.g., 𝑚𝑚,𝑛𝑛 < 5 or 𝑚𝑚,𝑛𝑛 < 10, etc.) can be used as the primary basis for selecting

dependent subsets of variables. In various embodiments, approaches for reducing complexity

include sparse graphs, clustering methods, random sampling, and physical models, among others.

[0070] At block 125, the operation involves creating a probabilistic graph, such as a factor

graph, based on the subsets of variables that are identified as dependent. As mentioned above, the

probabilistic graph that is created does not have any predetermined structure. Rather, in the case

of factor graphs, the factor graph is created by creating a set of factor nodes corresponding to the

dependent subsets of variables and by adding edges from the factors to their corresponding variable

nodes.

[0071] Use of statistical moments to determine dependence and to create nodes and edges is

merely an example, and heuristics or metrics other than statistical moments may be used. Such

other heuristics or metrics may be used to create probabilistic graphs other than factor graphs. Such

other heuristics and metrics and probabilistic graphs are contemplated to be within the scope of

the present disclosure.

[0072] At block 130, the operation involves determining probabilistic parameters of the

probabilistic graph created in block 125. More specifically, for a factor graph, the operation

involves estimating a probability density function for each factor node of the factor graph using

Monte Carlo integration. As persons skilled in the art will understand, Monte Carlo integration as

PATENT APPLICATION

Attorney Docket No. 3112-2

17

used herein refers to an empirical technique for determining the expected value of a statistical

quantity which may be written as an integral of the quantity against its probability density function.

The operations of block 130 encompass the factory density estimation phase mentioned above.

[0073] The operations of block 130 can characterize the functional form of the component

factors of a global system PDF. The operation assumes that each component factor represents the

joint PDF of its connected variables, i.e. posterior densities over the variables. For example, if

{𝑽𝑽𝟏𝟏,𝑽𝑽𝟐𝟐} and {𝑽𝑽𝟐𝟐,𝑽𝑽𝟑𝟑,𝑽𝑽𝟒𝟒} were identified as the dependent subsets of variables of a four variable

system, then the global PDF can be expressed by 𝒇𝒇(𝑽𝑽𝟏𝟏,𝑽𝑽𝟐𝟐,𝑽𝑽𝟑𝟑,𝑽𝑽𝟒𝟒) ∝ 𝒇𝒇𝟏𝟏(𝑽𝑽𝟏𝟏,𝑽𝑽𝟐𝟐)𝒇𝒇𝟐𝟐(𝑽𝑽𝟐𝟐,𝑽𝑽𝟑𝟑,𝑽𝑽𝟒𝟒).

To solve for the functional form of the factor PDF, 𝒇𝒇𝟏𝟏 and 𝒇𝒇𝟐𝟐, Theorem 1 can be used to construct

estimates of the densities using empirical measurements of the joint statistical moments taken from

training data via Monte Carlo integration as in Equation 2, or similarly, by directly computing the

expected value of the complex exponential in Equation 2 via Monte Carlo integration. In various

embodiments, the complexity of this phase may be mitigated by restricting attention to low-order

moments or truncating the summations when building estimates of the component factors.

[0074] Monte Carlo integration is provided as an example for characterizing the functional

form of factors and estimating probability density function from training data. Other embodiments

are contemplated for characterizing the functional form of factors and estimating probability

PATENT APPLICATION

Attorney Docket No. 3112-2

18

density function from training data. Such other embodiments are contemplated to be within the

scope of the present disclosure.

[0075] At block 135, the operation applies the probabilistic graph (e.g., factor graph) created

at block 125 and the probabilistic graph’s probabilistic parameters (e.g., component factor PDFs)

determined at block 130 to new observed data to make a prediction.

[0076] Once the factor graph and its component densities are determined, the operation of

block 135 implements an algorithm that applies the component densities to compute inferences

based on new data. As an example, the algorithm may use an instance of the sum-product algorithm

for computing inferences on certain system variables based on observed system variables, or using

various message passing techniques. Aspects of implementing the sum-product algorithm are

described in F. R. Kschischang, B. J. Frey and H. A. Loeliger, “Factor graphs and the sum-product

algorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 498-519, February 2001,

which is hereby incorporated by reference herein in its entirety. Persons skilled in the art will

understand how to implement the sum-product algorithm to compute inferences using component

densities. Since multiple factor graphs can be used to model the same data system, it is

advantageous to choose graphs with desirable properties for the inference algorithm. Sparse graphs

with large girth may yield better performance. In various embodiments, low-degree factors may

be selected before considering high-degree factors when constructing the factor graph model.

[0077] The descriptions provided in connection with FIG. 1 are examples. Variations are

contemplated to be within the scope of the present disclosure.

[0078] Accordingly, aspects of the modeling and inference framework described above may

be based on factor graphs and application of the sum-product algorithm for estimating the state of

system variables to be predicted, given the state of observed system variables. Factor graphs

PATENT APPLICATION

Attorney Docket No. 3112-2

19

provide a basic framework for representing any data system as the product of several lower-

complexity component densities. Given a specification of the component factors, the sum-product

algorithm can be implemented directly from the graph representation to compute marginal

densities on system variables to be predicted.

[0079] As an example of the operations of FIG. 1, the following will describe using automatic

graph learning to reverse engineer the Hamming code, based on training data comprised of input-

output codeword pairs. As shown below, automatic graph learning is capable of replicating known

decoder performance with an order of magnitude less training data than a multi-layer dense neural

network.

[0080] The following describes the factor graph representation of the (6,3) Hamming code,

which is a binary linear code with maximal codeword distance for its code rate. The notation (6,3)

refers to the codeword length (6-bits) and number of input bits (3-bits), which results in a code rate

of 1/2 (ratio of input bits to code bits). A systematic binary linear code includes the input bits as

part of the output codeword.

[0081] The following also illustrates the application of factor graphs and the sum-product

algorithm using a binary linear code, specifically the (6,3) Hamming code, and describes applying

the AGL framework to reverse engineer a decoder for the (6,3) Hamming code based on training

data of input-output codeword pairs. In the following, an abbreviated notation for the joint PDF

may be used for compactness, where 𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦) is written as 𝑓𝑓(𝑋𝑋,𝑌𝑌).

[0082] FIG. 2 depicts a factor graph relating the input and output bits of a (6,3) Hamming

code. The input bits 𝑢𝑢𝑖𝑖, 𝑖𝑖 = 1,2,3 are collectively designated as 210 and the output bits 𝑐𝑐𝑖𝑖, 𝑖𝑖 =

1,2, … ,6 are collective designated as 220. Factors 𝑓𝑓1, 𝑓𝑓2, and 𝑓𝑓3 represent equality constraints on

PATENT APPLICATION

Attorney Docket No. 3112-2

20

the systematic code bits and factors 𝑓𝑓4, 𝑓𝑓5, and 𝑓𝑓6 correspond to the parity check equations. The

factors are collectively designated as 230.

[0083] Let 𝑈𝑈 = (𝑈𝑈1, … ,𝑈𝑈𝑘𝑘) represent uncoded information bits 210 and 𝐶𝐶 = (𝐶𝐶1, … ,𝐶𝐶𝑛𝑛)

represent codewords 220 of the (𝑛𝑛 = 6, 𝑘𝑘 = 3) Hamming code, where 𝐶𝐶1 = 𝑈𝑈1, 𝐶𝐶2 = 𝑈𝑈2 and, 𝐶𝐶3 = 𝑈𝑈3 are the systematic code bits and 𝐶𝐶4 = 𝐶𝐶1 + 𝐶𝐶2, 𝐶𝐶5 = 𝐶𝐶1 + 𝐶𝐶3, and 𝐶𝐶6 = 𝐶𝐶2 + 𝐶𝐶3 are the

parity bits (modulo-two arithmetic). The codewords of a binary linear code are given by matrix

multiplication with the generator matrix, 𝐺𝐺, and are orthogonal to the parity check matrix, 𝐻𝐻, as

defined in FIG. 3 for the (6,3) Hamming code. The rows of 𝐻𝐻 span the null space of 𝐺𝐺 and

correspond to factor nodes 230 of the factor graph representation of the code, as shown in FIG. 2.

Any valid codeword must satisfy the parity check equations defined by the dual matrix.

[0084] Let 𝑉𝑉 = (𝑈𝑈,𝐶𝐶) denote the system variables. For the (6,3) Hamming code, we can write

a joint PDF for the system of variables as: 𝑓𝑓(𝑉𝑉) = 𝑓𝑓1(𝑈𝑈1,𝐶𝐶1)𝑓𝑓2(𝑈𝑈2,𝐶𝐶2)𝑓𝑓3(𝑈𝑈3,𝐶𝐶3)𝑓𝑓4(𝐶𝐶1,𝐶𝐶2,𝐶𝐶4)𝑓𝑓5(𝐶𝐶1,𝐶𝐶3,𝐶𝐶5)𝑓𝑓6(𝐶𝐶2,𝐶𝐶3,𝐶𝐶6),

EQUATION 4

where 𝑓𝑓𝑖𝑖, 𝑖𝑖 = 1,2,3, represents the equality constraint on the systematic bits and the remaining

factors correspond to parity check constraints. Equation 4 is expressed as a factor graph in FIG. 2.

Whereas the information bits are usually omitted from the code's factor graph, these variable nodes

are included to learn a model that is able to compute inferences on the variables to be predicted in

a general system.

[0085] For numerical evaluations, we use Binary Phase Shift Keying (BPSK) modulation with

real Additive White Gaussian Noise (AWGN) channel with for the received signal model: 𝑌𝑌𝑖𝑖 = (−1)𝐶𝐶𝑖𝑖 + 𝑊𝑊𝑖𝑖,

PATENT APPLICATION

Attorney Docket No. 3112-2

21

where 𝐸𝐸[𝑊𝑊𝑖𝑖2] = 𝑁𝑁0 and the signal-to-noise ratio is 𝑆𝑆𝑁𝑁𝑆𝑆 = 𝑁𝑁0−1. The a posteriori probability of

the transmitted bits is given by: 𝑓𝑓(𝑉𝑉|𝑌𝑌) ∝ 𝑓𝑓(𝑉𝑉)�𝑓𝑓(𝑌𝑌𝑖𝑖|𝐶𝐶𝑖𝑖),

where 𝑌𝑌 = (𝑌𝑌1, … ,𝑌𝑌6). The channel output likelihoods {𝑓𝑓(𝑌𝑌𝑖𝑖|𝐶𝐶𝑖𝑖)} are often depicted as dongles

hanging from the code bit variable nodes 220 in FIG. 2, reflecting that they are a function only of

the {𝐶𝐶𝑖𝑖} given the channel output {𝑌𝑌𝑖𝑖}.

[0086] There is a one-to-one correspondence between the edges of the factor graph in FIG. 2

and the nonzero elements of the parity check matrix defined in FIG. 3. Hence the binary linear

code can be constructed as a factor graph (in the dual domain), chosen for its desirable

characteristics for the decoder algorithm, such as density propagation and maximum size of the

minimum loop (i.e., maximum girth). The belief propagation decoder is an instance of the sum-

product algorithm. Belief propagation comprises iterative message massing between nodes of the

graph, as illustrated in FIG. 4 (variable node 210/220 update of belief propagation) and FIG. 5

(factor node 230 update of belief propagation). The algorithm assumes that an outgoing message

on a graph edge is independent from the incoming message on the same edge. This assumption is

violated after sufficiently many iterations for messages to traverse the length of the minimum loop.

Nonetheless belief propagation is an appropriate algorithm for inference processing on graphs and

the result of so-called loopy belief propagation is approximate after the number of iterations

exceeds one-half of the girth of the graph.

[0087] Given a factor graph model, its component PDF's can be estimated using empirical

measurements of relevant system moments derived from training data. In various embodiments,

low-order, low-degree moments may be used to generate approximate estimates of factors of the

system PDF. Given the graph model and estimates of its corresponding factors, the sum product

PATENT APPLICATION

Attorney Docket No. 3112-2

22

algorithm can be directly applied to compute the conditional PDF's of system variables of the graph

to be predicted, given the status of observed system variables. Variable node processing and factor

node processing steps of the sum-product algorithm are illustrated in FIG. 4 and FIG. 5, for the

case of binary parity check data.

[0088] The following describes using the proposed AGL framework to reverse engineer the

(6,3) Hamming code based on training data of 𝑇𝑇 input-output codeword pairs.

[0089] Phase I: Factor Selection

[0090] For the reverse engineering example, the thresholds are chosen to yield full rank parity

check matrices with high reliability over randomly selected training data and used only degree-2

and degree-3 factors. In various embodiments, factor degrees can be selected according to a

prescribed degree distribution derived from mutual information transfer analysis of the training

data.

[0091] In various embodiments, other constraints can be imposed on the factor selection

candidate set. For example, a linear independence condition can be enforced such that a new factor

will be added to the graph only if it is linearly independent from the set of existing factors. This

condition prohibits over-determining the system factors arising from multiple ways of factoring

coupled sets of dependent variables. Similarly, limiting the rank of the graph to the dimension of

the observed variables prevents over-determining the factors of the system. Additionally, any new

factor that overlaps with an existing factor by two or more variables can be discarded. This

condition avoids the creation of graph loops of size four which would degrade the performance of

belief propagation (sum-product algorithm). Thus, the girth of the graph is at least six and three

iterations of belief propagation are guaranteed before the assumption of independence of factor

messages is violated.

PATENT APPLICATION

Attorney Docket No. 3112-2

23

[0092] Phase 2: Factor Density Estimation

[0093] Equation 1 can be refined for the case of binary data: 𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦) = � 𝐹𝐹𝑋𝑋𝑋𝑋(ω𝑘𝑘,ω𝑙𝑙)(−1)(ω𝑘𝑘𝑥𝑥+ω𝑙𝑙𝑦𝑦)ω𝑘𝑘,ω𝑙𝑙∈{0,1}2

EQUATION 5

where 𝑋𝑋 and 𝑌𝑌 are binary random variables, and Equation 3 becomes:

𝐹𝐹𝑋𝑋𝑋𝑋(ω𝑘𝑘,ω𝑙𝑙) =
1

4
𝐸𝐸�(−1)(ω𝑘𝑘𝑋𝑋+ω𝑙𝑙𝑋𝑋)�.

EQUATION 6

Three or more variables can be generalized from the form above.

[0094] In the Error Control Coding (ECC) reverse engineering example described herein,

Equation 6 is estimated from the training data with Monte Carlo integration and then Equation 5

is computed to provide estimates of the component factors of system posterior density. Hence, the

same training data is used to separately select dependent variable subsets and then estimate their

joint density functions. In various embodiments, the disclosed technology can jointly perform

dependent subset selection and density estimation.

[0095] Phase 3: Sum Product Algorithm

[0096] The PDF computed with Equation 5 can be used to implement the sum-product

algorithm as follows. When computing the factor node update for variable 𝑉𝑉𝑙𝑙, the conditional PDF 𝑓𝑓(𝑉𝑉𝑙𝑙|𝑉𝑉𝑚𝑚,𝑉𝑉𝑛𝑛) (derived from 𝑓𝑓(𝑉𝑉𝑙𝑙,𝑉𝑉𝑚𝑚,𝑉𝑉𝑛𝑛)) is multiplied by the variable densities 𝑎𝑎(𝑉𝑉𝑚𝑚) and 𝑎𝑎(𝑉𝑉𝑛𝑛)

received as messages from variable nodes 𝑉𝑉𝑚𝑚 and 𝑉𝑉𝑛𝑛 to obtain the joint density, which is then

marginalized for the output variable 𝑉𝑉𝑙𝑙. This process is executed at each iteration of belief-

propagation, for example, according to the equations defined in FIG. 4 and FIG. 5 which describe

an implementation of sum-product update equations for binary data.

PATENT APPLICATION

Attorney Docket No. 3112-2

24

[0097] Accordingly, the phases described above in connection with FIGS. 2–5 create a factor

graph with component factor densities that can operate as a decoder for a (6, 3) Hamming code.

The factor graph is created without any predetermine graph structure. A comparison of factor

graphs created using the present disclosure with various neural networks (FIG. 7) is described

below.

[0098] FIG. 6 illustrates results of testing the performance of Automatic Graph Learning

(AGL) versus Dense Neural Network (DNN) with different number of training codeword pairs

(T=10,20,100). In the test results, AGL performs as well as belief propagation with a known

decoder, both with 8 iterations.

[0099] The testing implemented a belief propagation decoder using an AGL derived model as

described above and compared the performance to the true decoder in FIG. 6. The result shows

that, with only 10 training codeword pairs, AGL has the potential to match performance of the true

decoder. When the learned factor graph corresponds to a parity check matrix whose rows span the

null space of the generator matrix, there is no difference in performance between the true decoder

and the AGL model.

[0100] However, depending on the realization of the 10 training data samples, the factor

selection algorithm may not always select a parity matrix that is rank-six or dual to the generator.

The AGL curve labeled “Model Mismatch Type 1” depicts the performance of a rank-five parity

matrix (whose rows lie in the null space of the generator matrix 𝐺𝐺) after three iterations of belief

propagation decoding. The result shows a 3.8 dB loss compared to ideal curve at BER=10−5. The

AGL curve labeled “Model Mismatch Type 2” is rank-six but contains one factor that violates two

of three orthogonality conditions (with 𝐺𝐺). Despite this impediment, the result demonstrates

reasonable performance with a loss of roughly 5.5 dB compared to true decoder.

PATENT APPLICATION

Attorney Docket No. 3112-2

25

[0101] In 1000 trials of T=10 training codeword pairs, the testing found that 50.7% learned

models were full-rank in the null space of 𝐺𝐺, 30.9% were rank-five in the null space of 𝐺𝐺 (“Model

Mismatch Type 1”), and 2.3% had one or two orthogonality constraint violations (“Model

Mismatch Type 2”). The numerical results further suggest that variations on the sum-product

algorithm may compensate for model mismatch. In particular, the result labeled “Model Mismatch

Type 2” was developed by a sum-product decoder that used the joint factor distribution when

implementing check node processing in FIG. 4, instead of the conditional form as depicted.

Variations on the inference processing algorithm, including variations on the sum-product

algorithm and related algorithms, are included in the scope of the present invention.

[0102] The testing designed and trained multi-layer Dense Neural Networks (DNN) with the

TensorFlow/Keras toolkit and used it to decode noisy channel outputs with the same AWGN

channel model used above. The parameters of the DNN are listed in FIG. 7 (Keras model

summary), where the Adam optimizer was used with a mean squared error loss function. The

testing found that the performance of the neural network was moderately improved by adding a

small amount of AWGN to the modulated training data. The DNN is unable to match the

performance of the AGL (T=10) when the parity matrix is dual to the generator, even with 100

training samples. AGL model mismatch cases yield comparable performance to DNN with T=100

and T=20 training samples. Based on the test results, AGL has the potential to outperform

competitive neural networks with an order of magnitude less training data.

[0103] Accordingly, the present disclosure provides an AGL framework for applications in

machine learning and artificial intelligence systems. As described herein, a suitable factor graph

model can be learned by detecting dependent subsets of system variables, and component factor

PDFs can be estimated using Fourier domain representations. Numerical results are provided for

PATENT APPLICATION

Attorney Docket No. 3112-2

26

the ECC reverse engineering problem, which show that AGL with limited training data has the

potential to provide a competitive alternative to neural networks.

[0104] In the disclosed approach, computational complexity may exist in constructing the

factor graph, due to the combinatorial complexity of selecting variable subsets and of constructing

an accurate model with limited training data. However, several heuristics are disclosed to reduce

the candidate search space and, further, application specific prescriptions could be leveraged. For

example, application specific constraints relating to statistical aspects of physical laws may be

used to create the probabilistic model, which may help to reduce computational complexity. Once

the graph is determined, the results show that a relatively small amount of training is usable to

characterize the factor PDFs, such as only 10 training codewords to replicate the performance of

the true belief propagation decoder. The results show that inference processing using belief

propagation is viable even when there is a small degree of model mismatch.

[0105] Referring now to FIG. 8, there is shown a block diagram of exemplary components of

a system or device 800. The block diagram is provided to illustrate possible implementations of

various parts of the disclosed systems and devices, such as the operations of FIGS. 1–5.

[0106] The computing system 800 includes a processor or controller 805 that may be or

include, for example, one or more central processing unit processor(s) (CPU), one or more

Graphics Processing Unit(s) (GPU or GPGPU), and/or other types of processor, such as a

microprocessor, digital signal processor, microcontroller, programmable logic device (PLD), field

programmable gate array (FPGA), or any suitable computing or computational device. The

computing system 800 also includes an operating system 815, a memory 820, a storage 830, input

devices 835, output devices 840, and a communication device 822. The communication device

822 may include one or more transceivers which allow communications with remote or external

PATENT APPLICATION

Attorney Docket No. 3112-2

27

devices and may implement communications standards and protocols, such as cellular

communications (e.g., 3G, 4G, 5G, CDMA, GSM), Ethernet, Wi-Fi, Bluetooth, low energy

Bluetooth, Zigbee, Internet-of-Things protocols (such as mosquitto MQTT), and/or USB, among

others.

[0107] The operating system 815 may be or may include any code designed and/or configured

to perform tasks involving coordination, scheduling, arbitration, supervising, controlling or

otherwise managing operation of computing system 800, such as scheduling execution of

programs. The memory 820 may be or may include, for example, one or more Random Access

Memory (RAM), read-only memory (ROM), flash memory, volatile memory, non-volatile

memory, cache memory, and/or other memory devices. The memory 820 may store, for example,

executable instructions that carry out an operation (e.g., executable code 825) and/or data.

Executable code 825 may be any executable code, e.g., an app/application, a program, a process,

task or script. Executable code 825 may be executed by controller 805.

[0108] The storage 830 may be or may include, for example, one or more of a hard disk drive,

a solid state drive, an optical disc drive (such as DVD or Blu-Ray), a USB drive or other removable

storage device, and/or other types of storage devices. Data such as instructions, code, procedure

data, and medical images, among other things, may be stored in storage 830 and may be loaded

from storage 830 into memory 820 where it may be processed by controller 805. The input devices

535 may include, for example, a mouse, a keyboard, a touch screen or pad, or another type of input

device. The output devices 840 may include one or more monitors, screens, displays, speakers

and/or other types of output devices.

[0109] The illustrated components of FIG. 8 are exemplary and variations are contemplated to

be within the scope of the present disclosure. For example, the numbers of components may be

PATENT APPLICATION

Attorney Docket No. 3112-2

28

greater or fewer than as described and the types of components may be different than as described.

When the system 800 implements a machine learning system, for example, a large number of

graphics processing units may be utilized. When the computing system 800 implements a data

storage system, a large number of storages may be utilized. As another example, when the

computing system 800 implements a server system, a large number of central processing units or

cores may be utilized. Other variations and applications are contemplated to be within the scope

of the present disclosure.

[0110] The embodiments disclosed herein are examples of the disclosure and may be

embodied in various forms. For instance, although certain embodiments herein are described as

separate embodiments, each of the embodiments herein may be combined with one or more of the

other embodiments herein. Specific structural and functional details disclosed herein are not to be

interpreted as limiting, but as a basis for the claims and as a representative basis for teaching one

skilled in the art to variously employ the present disclosure in virtually any appropriately detailed

structure. Like reference numerals may refer to similar or identical elements throughout the

description of the figures.

[0111] The phrases “in an embodiment,” “in embodiments,” “in various embodiments,” “in

some embodiments,” or “in other embodiments” may each refer to one or more of the same or

different embodiments in accordance with the present disclosure. A phrase in the form “A or B”

means “(A), (B), or (A and B).” A phrase in the form “at least one of A, B, or C” means “(A); (B);

(C); (A and B); (A and C); (B and C); or (A, B, and C).”

[0112] The systems described herein may also utilize one or more processors to receive various

information and transform the received information to generate an output. The processor may

include any type of computing device, computational circuit, or any type of controller or

PATENT APPLICATION

Attorney Docket No. 3112-2

29

processing circuit capable of executing a series of instructions that are stored in a memory. The

processor may include multiple processors and/or multicore central processing units (CPUs) and/or

graphical processing units (GPUs) and may include any type of controller, such as a

microprocessor, digital signal processor, microcontroller, programmable logic device (PLD), field

programmable gate array (FPGA), or the like. The processor may also include a memory to store

data and/or instructions that, when executed by the one or more processors, causes the one or more

processors to perform one or more methods and/or algorithms.

[0113] Any of the herein described methods or operations may be converted to, or expressed

in, a programming language or computer program. The terms “programming language” and

“computer program,” as used herein, each include any language used to specify instructions to a

computer, and include (but is not limited to) the following languages and their derivatives:

Assembler, Basic, Batch files, BCPL, C, C+, C++, Delphi, Fortran, Java, JavaScript, machine

code, operating system command languages, Pascal, Perl, PL1, Python, scripting languages, Visual

Basic, metalanguages which themselves specify programs, and all first, second, third, fourth, fifth,

or further generation computer languages. Also included are database and other data schemas, and

any other meta-languages. No distinction is made between languages which are interpreted,

compiled, or use both compiled and interpreted approaches. No distinction is made between

compiled and source versions of a program. Thus, reference to a program, where the programming

language could exist in more than one state (such as source, compiled, object, or linked) is a

reference to any and all such states. Reference to a program may encompass the actual instructions

and/or the intent of those instructions.

[0114] It should be understood that the foregoing description is only illustrative of the present

disclosure. Various alternatives and modifications can be devised by those skilled in the art without

PATENT APPLICATION

Attorney Docket No. 3112-2

30

departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such

alternatives, modifications, and variances. The embodiments described with reference to the

attached drawing figures are presented only to demonstrate certain examples of the disclosure.

Other elements, steps, methods, and techniques that are insubstantially different from those

described above and/or in the appended claims are also intended to be within the scope of the

disclosure.

PATENT APPLICATION

Attorney Docket No. 3112-2

31

What is Claimed:

1. A system comprising:

one or more processors; and

at least one memory storing instructions which, when executed by the one or more

processors, cause the system to:

access training data relating to a plurality of variables,

determine a factor graph model based on the training data, the factor graph model

including component factors,

estimate probability density functions for the component factors based on Monte

Carlo integration in frequency domain, and

apply the factor graph model with the estimated probability density functions for

the component factors to new observed data to provide a prediction.

2. The system of claim 1, wherein in determining the factor graph model, the instructions,

when executed by the one or more processors, cause the system to determine low-order moments

based on the training data.

3. The system of claim 2, wherein in determining the factor graph model, the instructions,

when executed by the one or more processors, cause the system to identify subsets of dependent

variables based on the low-order moments.

PATENT APPLICATION

Attorney Docket No. 3112-2

32

4. The system of claim 3, wherein in identifying the subsets of dependent variables, the

instructions, when executed by the one or more processors, cause the system to compare whether

joint variable moments deviate from products of individual variable moments.

5. The system of claim 4, wherein in determining the factor graph model, the instructions,

when executed by the one or more processors, cause the system to create factor nodes

corresponding to the subsets of dependent variables and adding edges from the factor nodes to

corresponding variable nodes.

6. The system of claim 1, wherein in estimating probability density functions for the

component factors, the instructions, when executed by the one or more processors, cause the

system to estimate functional forms of the probability density functions for the component

factors using Fourier domain synthesis.

7. The system of claim 6, wherein in estimating probability density functions for the

component factors, the instructions, when executed by the one or more processors, cause the

system to estimate the probability density functions for the component factors using the

functional forms, joint variable moments, and direct Monte Carlo integration in the frequency

domain.

8. The system of claim 1, wherein the instructions, when executed by the one or more

processors, further cause the system to apply the factor graph model with the estimated

PATENT APPLICATION

Attorney Docket No. 3112-2

33

probability density functions for the component factors to observed variables to make an

inference.

9. A method comprising:

accessing training data relating to a plurality of variables;

determining a factor graph model based on the training data, the factor graph model

including component factors;

estimating probability density functions for the component factors based on Monte Carlo

integration in frequency domain; and

applying the factor graph model with the estimated probability density functions for the

component factors to new observed data to make a prediction.

10. The method of claim 9, wherein determining the factor graph model includes determining

low-order moments based on the training data.

11. The method of claim 10, wherein determining the factor graph model includes identifying

subsets of dependent variables based on the low-order moments.

12. The method of claim 11, wherein identifying the subsets of dependent variables includes

comparing whether joint variable moments deviate from products of individual variable

moments.

PATENT APPLICATION

Attorney Docket No. 3112-2

34

13. The method of claim 12, wherein determining the factor graph model includes creating

factor nodes corresponding to the subsets of dependent variables and adding edges from the

factor nodes to corresponding variable nodes.

14. The method of claim 9, wherein estimating the probability density functions for the

component factors includes estimating functional forms of the probability density functions for

the component factors using Fourier domain synthesis.

15. The method of claim 14, wherein estimating the probability density functions for the

component factors includes estimating the probability density functions for the component

factors using the functional forms, joint variable moments, and direct Monte Carlo integration in

the frequency domain.

16. The method of claim 9, further comprising applying the factor graph model with the

estimated probability density functions for the component factors to observed variables to make

an inference.

17. A method comprising:

accessing training data relating to a plurality of variables;

determining a probabilistic graph model based on the training data, the probabilistic

graph model including nodes and edges deduced from the training data, and the probabilistic

graph model having no predetermined structure prior to the nodes and edges being deduced;

PATENT APPLICATION

Attorney Docket No. 3112-2

35

estimating probabilistic parameters of the probabilistic graph model using the training

data; and

applying the probabilistic graph model with the estimated probabilistic parameters to new

observed data to make a prediction.

18. The method of claim 17, wherein the probabilistic graph model is a factor graph model.

PATENT APPLICATION

Attorney Docket No. 3112-2

36

ABSTRACT

The present disclosure relates to supervised graph learning. In aspects, a system includes

one or more processors and at least one memory storing instructions. The instructions, when

executed by the processor(s), cause the system to access training data relating to variables,

determine a factor graph model based on the training data where the factor graph model includes

component factors, estimate probability density functions for the component factors based on

Monte Carlo integration in the frequency domain, and apply the factor graph model with the

estimated probability density functions for the component factors to new observed data to make a

prediction.

FIG. 1

Accessing training data for variables of a data system to be modeled.

Processing the training data to identify subsets of system variables that

are dependent.

Creating a probabilistic graph, such as a factor graph, based on the subsets

of variables that are identified as dependent.

Determining probabilistic parameters of the probabilistic graph, such as

estimating a probability density function (PDF) for each factor node of the

factor graph using Monte Carlo integration.

Apply the probabilistic graph (e.g., factor graph) and the graph’s

probabilistic parameters (e.g., component factor PDFs) to new observed

data to make a prediction.

110

120

125

130

135

1/6

FIG. 2

FIG. 3

210 220

230

2/6

FIG. 4

FIG. 5

230

230

210/220

210/220

3/6

FIG. 6

4
/6

FIG. 7

5/6

FIG. 8

800

822 805 815

820

825

830
835 840

6
/6

	[0050] Theorem 1
	[0052] Proof
	[0055] Corollary 1
	[0057] Proof
	[0065] At block 110, the operation involves accessing training data for variables of a data system to be modeled. The training data includes data for observable system variables. In various embodiments, the training data includes data for non-observab...
	[0072] At block 130, the operation involves determining probabilistic parameters of the probabilistic graph created in block 125. More specifically, for a factor graph, the operation involves estimating a probability density function for each factor n...
	[0073] The operations of block 130 can characterize the functional form of the component factors of a global system PDF. The operation assumes that each component factor represents the joint PDF of its connected variables, i.e. posterior densities ove...
	[0074] Monte Carlo integration is provided as an example for characterizing the functional form of factors and estimating probability density function from training data. Other embodiments are contemplated for characterizing the functional form of fac...
	[0075] At block 135, the operation applies the probabilistic graph (e.g., factor graph) created at block 125 and the probabilistic graph’s probabilistic parameters (e.g., component factor PDFs) determined at block 130 to new observed data to make a pr...

