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The role of feedback, CSI, and coherence
in MIMO systems

G. Barriac, N. Jacobsen, and U. Madhow

Department of Electrical and Computer Engineering

University of California, Santa Barbara

5.1 Introduction

The growth in wireless communication over the past decade has been fueled

by the demand for high-speed wireless data, in addition to the basic cellular

telephony service which is now an indispensable part of our lives. Cellular

operators are upgrading their networks to support higher data rates, and

the imminent completion of the 802.16 and 802.20 standards is precipitat-

ing the move towards ubiquitous broadband wireless access. Increasing the

capacity of current wireless links is perhaps the most essential step in real-

izing the vision of high-speed wireless data on demand, and adding multiple

antennas at both the transmitter and the receiver is known to dramatically

increase capacity. In this chapter, we explore the role of channel knowledge at

the transmitter in Multiple-Input Multiple-Output (MIMO) systems. While

feedback produces marginal gains in single antenna communication, even

partial channel knowledge at the transmitter is known to produce large per-

formance gains in MIMO systems. We also consider the benefits of partial

channel knowledge at the receiver in noncoherent systems.

For indoor Wireless Local Area Network (WLAN) systems with MIMO

capabilities, such as the Bell Labs BLAST prototype and emerging 802.11n

standards efforts, the system bandwidth is typically within the channel co-

herence bandwidth, which is large because of small indoor delay spreads. On

the other hand, emerging high-speed outdoor Wireless Metropolitan Area

Network (WMAN) communication systems such as 802.16 and 802.20 can

easily span a band which is several times the channel coherence bandwidth,

which is smaller due to larger delay spreads in outdoor channels. Moreover,

the angular spread in paths from transmitter to receiver in outdoor chan-

nels is often much smaller than for indoor channels, because of the typically

high altitude of the base station. Thus, outdoor spatial channels have a rel-
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atively small number of dominant spatial modes, and can therefore benefit

more from channel knowledge at the transmitter regarding these modes. Our

emphasis in this chapter, therefore, is on outdoor communication systems,

where implicit or explicit feedback regarding the channel is expected to be

most effective. In particular, we show that certain types of Channel State

Information (CSI) can be obtained robustly and without training overhead

in wideband systems. Such “implicit” feedback is particularly useful for out-

door channels, where it leads to both large performance gains and simpler

transceivers.

An important design consideration is the exploitation of the asymmetry

inherent in outdoor cellular or fixed wireless applications, where the base sta-

tion is significantly more capable than the subscriber unit. Specifically, the

base station can potentially have a large number of antennas, whereas the

subscriber unit may have no more than one or two, and the base station is ca-

pable of more complex signal processing. Thus, subscriber units with a single

antenna lead to the important special cases of Multiple-Input, Single-Output

(MISO) models for downlink communication, and Single-Input, Multiple-

Output (SIMO) models for uplink communication. For concreteness, we fo-

cus on Orthogonal Frequency Division Multiplexing (OFDM), which has

been designated as the physical layer in emerging outdoor WMAN stan-

dards such as 802.16a and 802.20, as well as indoor WLAN standards such

as 802.11n. Our approach is to characterize information theoretic limits, with

the understanding that rapid advances in turbo-like coded modulation have

brought such limits within reach using relatively standard architectures.

5.1.1 Feedback in narrowband systems

When both transmitter and receiver have perfect knowledge of the channel,

Telatar’s seminal work (Telatar, 1995) shows that the capacity achieving

transmit strategy is to send independent Gaussian symbols along the chan-

nel eigenvectors, with the power on each symbol being determined by the

classical “waterfilling” solution. While the resulting capacity gains over sin-

gle antenna channels are impressive (Telatar, 1995; Biglieri et al., 2001), in

practice, perfect channel knowledge is difficult to obtain.

Receiver CSI: In many scenarios, the transmitter can send sufficiently

many training, or pilot, symbols such that the receiver can accurately esti-

mate the channel. Hence, the approximation that the receiver has perfect

CSI is often reasonable, especially for downlink communication, where a

common pilot can be employed for channel estimation by a large number

of subscribers. We revisit this standard assumption of coherent reception in
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Section 5.4, which focuses on uplink communication, in which pilots cannot

be shared and are therefore more expensive.

Transmitter CSI: The role of CSI at the transmitter is the main focus of

this chapter. Two standard mechanisms for obtaining CSI at the transmitter

are as follows.

(a) Implicit feedback using reciprocity: If the same frequency band is em-

ployed for both uplink and downlink, as in a Time Division Duplex (TDD)

system, then the instantaneous channels for uplink and downlink are iden-

tical. Thus, estimates of the channel on the uplink can be employed for

downlink transmission, and vice versa. Inaccuracy in such implicit feedback

occurs because the channel may change between the time that the channel

estimate is obtained, and the time when the resulting implicit feedback is

employed.

(b) Explicit feedback: If the uplink and downlink employ different frequency

bands, as in a Frequency Division Duplex (FDD) system, or if the implicit

feedback due to reciprocity in a TDD system is unreliable due to channel

time variations, then channel information can be sent back to the transmit-

ter using explicit feedback. The challenge with this approach is the design

of economical and robust explicit feedback mechanisms.

For a time-varying wireless channel, it is unrealistic to expect either of these

two mechanisms to yield perfect CSI at the transmitter, so that it is impor-

tant to design systems and evaluate their performance under the assumption

of partial CSI. While CSI yields marginal performance gains for single an-

tenna communication, for MIMO systems, even partial CSI is known to

yield large potential performance gains (Narula et al., 1998; Visotsky and

Madhow, 2001; Medles et al., 2003).

Research on improving the capacity of narrowband MIMO channels via

a feedback channel to the transmitter include Lau et al. (2003); Jongren

et al. (2002); Mukkavilli et al. (2003b). Lau et al. consider optimizing the

CSI sent over a feedback channel, imposing a capacity constraint on the

maximum number of bits sent per fading block. It is shown that the optimal

feedback scheme is equivalent to the design of a vector quantizer with a

modified distortion measure. Jongren et al. assume that quantized channel

information is available at the transmitter, and employ it to guide the design

of space-time block codes preceded by CSI dependent precoding matrices.

Given the cost of sending back quantized channel values, many researchers

have looked at scenarios where the receiver sends back information which

designates the transmission strategy to be used. Mukkavilli et al. investigate

outage in MISO channels using beamforming, where the beamforming vec-

tor is determined by a finite capacity feedback channel carrying the index
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of the desired beamformer. The construction of near-optimal beamformer

codebooks for this purpose is considered in Mukkavilli et al. (2003a).

Beamforming to maximize the received Signal-to-Noise Ratio (SNR), us-

ing CSI obtained by reciprocity, is studied in Cavers (2002). It is shown that

for outdoor urban models, the time between the uplink and downlink should

be limited to 10 ms in order for the uplink measurements to be useful for

capacity enhancement on the downlink.

For wireless mobile channels, second order channel statistics vary much

more slowly than the channel realization itself. Thus, an important model

for robust channel CSI at the transmitter is that of spatial covariance feed-

back. Information theoretic computations show that such covariance feed-

back greatly improves capacity when the spatial channel is strongly colored

(Visotsky and Madhow, 2001; Jafar and Goldsmith, 2001; Jafar et al., 2001).

Visotsky and Madhow (2001) show that the optimal strategy for MISO sys-

tems with covariance feedback is a form of waterfilling, subject to a sum

power constraint, along the eigenvectors of the covariance matrix. This result

is extended to systems with multiple receive antennas by Jafar et al. (2001),

modeling the channel responses for different receive antenna elements as un-

correlated. Efficient computation of the waterfilling solution is considered in

Boche and Jorswieck (2003a,b); Simon and Moustakas (2002). The ergodic

and outage capacity for narrowband MIMO channels with covariance feed-

back is considered in Kang and Alouini (2003). The waterfilling strategy with

covariance feedback can be interpreted as a linear precoding matrix which

directs energy along the eigenvectors, followed by a space-time or space-

frequency code for diversity or multiplexing, with the eigendirections form-

ing “virtual” antenna elements. Examples of constructive space-time coding

schemes preceded by linear precoding based on covariance feedback include

BLAST-like spatial multiplexing (Simeone and Spagnolini, 2003), and diver-

sity using space-time block codes (Zhou and Giannakis, 2003). The results

confirm the performance improvements from covariance feedback predicted

by information-theoretic computations.

5.1.2 Feedback in wideband systems

OFDM provides a convenient method of decomposing a wideband channel

into a collection of parallel narrowband channels, or subcarriers. In principle,

therefore, narrowband space-time communication techniques can be applied

on a per subcarrier basis in OFDM systems. However, obtaining and using

channel feedback per subcarrier can be computationally complex, expensive

in terms of training overhead, and sensitive to channel estimation errors.
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Recent work on MIMO-OFDM systems with per-subcarrier channel feedback

include Xia et al. (2004); Vook et al. (2003). In Xia et al. (2004), a feedback

model is considered where the transmitter knows each subcarrier’s channel

up to a certain uncertainty. A precoder based on the available CSI is used

with a space-time code on a per-subcarrier basis, and an adaptive power

and bit loading scheme across subcarriers is also used. Vook et al. (2003)

consider the performance of MIMO OFDM under various assumptions on the

information available at the transmitter. This work reports on simulation-

based results for specific code-constructions, and indicates a sensitivity to

errors in the transmitter’s CSI.

The performance of channel estimation and feedback can be improved by

exploiting the high degree of correlation between channels on neighboring

subcarriers. In particular, it can be shown (Barriac and Madhow, 2004a),

that the channel spatial covariance is invariant across frequency. Thus, im-

plicit feedback regarding the downlink covariance matrix can be obtained

by suitably averaging uplink measurements, for both TDD and FDD sys-

tems (Barriac and Madhow, 2004b). This concept, which we term statistical

reciprocity, is therefore more general than the deterministic reciprocity em-

ployed to obtain implicit feedback in TDD systems. The covariance feedback

obtained from statistical reciprocity is robust, since it is invariant across fre-

quency and varies very slowly with time. This is in contrast to the fragility

of both implicit and explicit feedback regarding the channel realization per

subcarrier, which varies relatively rapidly across both frequency and time.

Implicit covariance feedback is particularly effective for outdoor channels

for several reasons. First, accurate estimation of the covariance by averag-

ing across frequency is possible because of the smaller coherence bandwidth.

Second, covariance feedback is especially useful when the spatial covariance

is strongly colored, as is typically the case for the narrow power-angle pro-

files seen in outdoor environments. Third, since the covariance is invariant

across subcarriers, so is the space-time communication strategy based on

covariance feedback, which significantly reduces transceiver complexity. For

the remainder of this chapter, therefore, we focus on system designs centered

around the “free” availability of the spatial covariance matrix at the base

station in a cellular-like OFDM system.

The notion of using covariance information on the uplink to optimize

downlink transmission has previously been applied in the context of fre-

quency division duplex (FDD) systems using TDMA or DS-CDMA (Mor-

gan, 2003; Hochwald and Marzetta, 2001; Liang and Chin, 2001; Raleigh and

Jones, 1997). The covariance is obtained either by averaging uplink chan-

nel responses across time, or by estimating the directions of arrival (DOA)
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of the incoming paths, and directly determining the covariance from these

measurements. DOA estimation is known to be computationally intensive

(Liang and Chin, 2001), and may be infeasible if there are too many mul-

tipath components, or an insufficient number of antenna elements. On the

other hand, time averaging has the disadvantage that the amount of time

necessary to construct an accurate estimate of the covariance matrix may

exceed the allotted uplink transmit time.

Statistical reciprocity applies directly for both TDD systems, and for FDD

systems in which the uplink and downlink bands are close enough that the

array response for a given DOA is approximately the same on both uplink

and downlink. For FDD systems in which the uplink and downlink bands are

widely separated, this assumption may break down. However, it is possible to

transform the uplink covariance matrix to obtain the downlink covariance

matrix using a frequency calibration matrix (Liang and Chin, 2001), or

by use of a clever antenna configuration (Hochwald and Marzetta, 2001)

that attains identical beampatterns at both uplink/downlink wavelengths.

These techniques, originally developed for single-carrier systems, are directly

applicable to OFDM systems as well.

5.1.3 Chapter organization

The remainder of this chapter is organized as follows. Section 5.2 presents a

MIMO-OFDM model, infers statistical reciprocity, and describes estimation

of the spatial covariance without any training overhead. Downlink optimiza-

tion, including choice of antenna spacing, using this implicit covariance feed-

back is described in Section 5.3. Section 5.4 describes uplink optimization

based on the spatial covariance estimate, using a novel noncoherent tech-

nique that provides beamforming gain without explicit estimation of the

channel realization for each subcarrier. Section 5.5 provides our conclusions.

5.2 Modeling

We start with industry-standard statistical models for simulating outdoor

space-time channels (Saleh and Valenzuela, 1987; Pedersen et al., 1999).

Such measurement-based models specify the power delay profile (PDP) and

the power angle profile (PAP), as well as the distribution of the delays and

the angles of arrival/departure of various multipath components. The PDP

specifies the power distribution versus time, while the PAP specifies the

power distribution as a function of the angle of arrival. A valid transceiver

design must exhibit good performance at the nominal Signal-to-Noise Ra-
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tio (SNR) for “most” random channel realizations consistent with such a

statistical model. For our information-theoretic investigation, we show that

simulation-based statistical models can be replaced by bandwidth-dependent

tap delay line (TDL) models that are more amenable to analytical insight.

5.2.1 Vector tap delay line channel model

We consider outdoor channels in which the base station (BS) is located

high enough, and far enough away from the mobiles, that signals reaching

a particular mobile leave the BS in a narrow spatial cone. As in the classic

Saleh-Valenzuela model (Saleh and Valenzuela, 1987), the channel response

is decomposed into clusters. Experimental measurements of outdoor chan-

nels (Pedersen et al., 1999, 1997; Martin, 2002) indicate that the number

of clusters is small, usually one or two. The power delay profile within each

cluster is well modeled as exponential, and the power angle profile for each

cluster as Laplacian. Thus, a “single cluster channel” would have an ex-

ponential PDP and a Laplacian PAP, while a “two cluster channel” would

have a PDP comprised of the sum of two exponential profiles (each with a

different start time, rate of decay, and total power), and a PAP comprised

of the sum of two Laplacian profiles.

For a system bandwidth of W , the taps in a TDL channel model are spaced

apart by 1/W . Assuming a large enough number of paths, each such tap is

composed of a number of unresolvable taps. The phases of the unresolvable

taps are well modeled as independent and identically distributed (i.i.d.), and

uniformly distributed over [0, 2π]. This is because small changes in delay pro-

duce large changes in carrier phase, under the standard assumption that the

carrier frequency is much larger than the signal bandwidth. Application of

the central limit theorem now leads to the classical Rayleigh fading model, in

which the resolvable taps are modeled as zero mean, circular Gaussian. The

variance of these resolvable taps is the sum of strengths of the unresolvable

constituent taps, and therefore depends on the power-delay profile, Pτ (·).
For a multiantenna system, the channels seen by different antenna elements

are modeled as correlated and jointly complex Gaussian, again applying the

central limit theorem.

As an example, consider a MISO channel modeling a typical downlink.

Letting Pτ (·) and PΩ(·) denote the channel power delay profile and power

angle profile, respectively, we obtain the following vector TDL model (ig-
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noring the effect of channel time variations):

hW (τ) =
∞
∑

l=0

Alvlδ(τ −
l

W
) (5.1)

where we set

Al ∝

√

Pτ (
l

W
), l = 0, . . . ,∞ (5.2)

to capture the dependence of tap strength on PDP, and where the i.i.d.

complex Gaussian vectors vl ∼ CN (0,C), with the spatial covariance matrix

C determined by the array manifold and the channel PAP. Specifically, the

spatial covariance is given by

C = E[a(Ω)a(Ω)H ] =

∫ π

−π

a(Ω′)a(Ω′)HPΩ(Ω′)dΩ′ (5.3)

where a(Ω) is the base station array response as a function of angle of

departure Ω. As a running example, we consider a linear array, for which

a = [a1 . . . aNT
]T , al(Ω) = ej(l−1)2π d

λ
sin(Ω), l = 1, . . . , NT (5.4)

where d is the antenna array spacing, and λ the carrier wavelength. NT is

the number of transmit antennas. This corresponds to a one dimensional

equally spaced antenna array with spacing d.

If the mobile has multiple antennas, then, assuming that there is suffi-

ciently rich scattering around the mobile, the channels from the BS to the

different mobile antennas are well modeled as i.i.d. realizations of the pre-

ceding MISO model.

5.2.2 Spatial covariance estimation from uplink measurements

We first observe that uplink measurements can be employed to estimate the

spatial covariance matrix C. For simplicity of notation, we assume in the

following that the mobile has one antenna, and communicates with a BS

with an N element antenna array. Since the responses from the base station

array to different antenna elements at the mobile are modeled as i.i.d., more

mobile antennas would provide even more averaging when estimating the

covariance matrix on the uplink.

The mobile employs K subcarriers (which may not be contiguous), and

the received signal vector on the kth subcarrier is given by

sk = hkxk + nk, (5.5)

where hk is the N × 1 channel frequency response, nk is AWGN with
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E[njn
H
k ] = 2σ2δjkIN , and IN denotes the N × N identity matrix. We

know from Section 5.2.1 that the hk are identically distributed, with hk ∼
CN (0,C).

A spectral decomposition of the channel covariance yields

C = UΛUH , (5.6)

where the eigenvector matrix U = [u1 . . . uN ] is unitary, and Λ is diago-

nal with eigenvalues {λl} arranged in decreasing order. The eigenvalue λl

represents the strength of the channel on lth eigenmode ul.

For the large delay spreads typical of outdoor environments, the coher-

ence bandwidth is small, and the correlation between the channel responses

at different frequencies dies out quickly with their separation. Thus, the

base station can accurately estimate C by measuring the channel over a

rich enough set of frequencies on the uplink (Barriac and Madhow, 2003,

2004b). Averaging over frequency bins, the base station forms an empirical

autocorrelation matrix R:

R =
1

K

K
∑

k=1

sks
H
k . (5.7)

With E[|xk|
2] = 1, it is easy to show that R is an estimate of C + 2σ2IN ,

where σ2 is the noise variance per dimension. Thus, if λl are the eigenvalues

of C, the eigenvalues of R are λl + 2σ2. The eigenvectors of the two matrices

are the same. An eigendecomposition of R therefore yields the dominant

channel eigenmodes. Typically, the number of dominant eigenmodes is small

for an outdoor channel because of the narrow PAP corresponding to signals

received from a given mobile.

In the succeeding sections, we see how the preceding covariance estimate

can be employed for both downlink and uplink optimization.

5.3 Downlink optimization with implicit covariance feedback

The empirical correlation matrix of the the uplink signal from a given mo-

bile, as computed in Section 5.2.2, provides implicit feedback regarding the

downlink covariance matrix from the BS to that mobile.

5.3.1 Shannon-theoretic performance evaluation

Once the spatial covariance matrix C is known with sufficient accuracy,

downlink transmission for a system with NT BS antennas and NR mobile

antennas (NT � NR) is optimized by sending i.i.d. Gaussian inputs for each
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subcarrier, so that the ergodic capacity is that of a narrowband system with

covariance feedback, as considered in (Visotsky and Madhow, 2001; Jafar

et al., 2001). The optimal policy for each subcarrier is to send independent

Gaussian inputs along the eigenvectors of C, with the power allocated to

each eigenmode determined by a waterfilling strategy. In practice, for an

outdoor channel, the transmitted power can be concentrated along a small

number KT (KT � NT ) of dominant eigenmodes using a linear precoding

matrix, along with a space-time code designed for a virtual KT ×NR MIMO

system, in which the number KT of virtual transmit antenna elements equals

the number of eigenmodes with nonzero transmitted power. If λi is the

eigenvalue for the ith eigenmode (in decreasing order) which is employed for

transmission, and pi is the power allocated to the ith eigenmode, then the

mutual information along a given subcarrier is a random variable which can

be written as

I(p) = log

∣

∣

∣

∣

∣

INR
+

1

σ2
n

KT
∑

i=1

ziz
H
i piλi

∣

∣

∣

∣

∣

, (5.8)

where the zi are independent NR × 1 vectors whose elements are i.i.d.

CN (0, 1), and σ2
n is the noise variance per dimension. We normalize the

channel eigenvalues {λi} such that
∑NT

i=1 λi = NT , and the powers such that
∑KT

i=1 pi = P .

We now discuss the Shannon-theoretic performance attained by the pre-

ceding strategy. For a MISO system employing multiple subcarriers on the

downlink, spanning a bandwidth W , the spectral efficiency IW , or the mu-

tual information averaged across subcarriers, is given by averaging (5.8)

across the subcarriers employed. Under mild conditions on the power delay

profile, the channels seen by different subcarriers decorrelate rapidly enough

that such averages obey a central limit theorem. The spectral efficiency is

therefore well modeled as Gaussian, with mean given by the expectation of

(5.8). This is simply the ergodic capacity of a single subcarrier, given by

E[IW ] = E[I(p)]. (5.9)

For a single cluster channel, the variance of the spectral efficiency can be

estimated as follows (Barriac and Madhow, 2004a):

var[IW ] ≈
NR

∑KT

i=1(λipi)
2

(1 +
∑KT

i=1 λipi)2
1

W

∫

P 2(τ) dτ, (5.10)

where the PDP is normalized as
∫

P (τ)dτ = 1. Note that the variance is

inversely proportional to the system bandwidth.

Knowing the mean and variance of the spectral efficiency, we can now
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provide simple analytical estimates of the outage rate based on the Gaussian

approximation. Let rate R(ε), which is defined to be the largest transmission

rate R (normalized by the system bandwidth W ), such that the following

condition holds:

P [IW ≤ R] ≤ ε. (5.11)

Modeling IW as Gaussian, we obtain the following approximation for R(ε),

R̂(ε) ≈ E[IW ] −
√

var[IW ] ∗ Q−1(ε), (5.12)

where Q(x) is the complementary cumulative distribution function of a stan-

dard Gaussian random variable. The absolute outage rate, of course, is given

by R(ε)W .

From (5.10), we note that the variance of IW decreases with increasing W ,

regardless of the power allocation across eigenmodes. Thus, for large system

bandwidths, the outage rate is approximately maximized by maximizing

the ergodic capacity E[IW ]. We will refer to this observation later, when we

discuss downlink optimization by varying antenna spacing.

5.3.2 Accuracy of implicit covariance feedback

There are two key issues affecting the accuracy of estimating the covariance

matrix C as in the previous section:

(i) The covariance must vary slowly enough such that, when the base station

sends to user k, the estimate Ĉk is still valid.

(ii) A mobile must employ enough subcarriers, and a wide enough separation

among the subcarriers, that the empirical average (5.7) provides an accurate

covariance estimate.

Both of these conditions are met for a wide variety of resource sharing

models, including FDD systems where the uplink and downlink are con-

tiguous (Barriac and Madhow, 2004b). As an example, we consider a TDD

system with TDMA on the uplink and TDM on the downlink, which implies

that there is a significant delay between acquiring covariance feedback based

on uplink measurements, and employing it on the downlink.

We assume an OFDM system with 1024 subcarriers spaced 25 KHz apart.

The PAP is initially L(0◦, 5◦) (L(M,α) denotes a Laplacian distribution with

mean M and variance 2α2) and the PDP is exponential with an rms value of

0.5 µs. SNR is set to 10 dB. The BS has 6 antennas, with a typical antenna

spacing of d/λ = 0.5. At this spacing, beamforming is the optimal transmit

strategy for the given PAP.

The TDD system under consideration is shown in Fig. 5.1. Each user sends
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user 2

user 1

user 2

user 1

up
lin

k
do

w
nl

in
k

frequency

tim
e

Fig. 5.1. A TDD system with TDMA on the uplink and TDM on the downlink

to the base station using the entire frequency band for a certain amount of

time, and subsequently the base station takes turns sending to the mobiles

over whole band. For such a system, K in (5.7) equals the entire set of fre-

quency bins for all users. If the bandwidth is large, Ĉk is clearly a good

approximation for Ck, but the question remains as to whether this covari-

ance will remain valid until the BS is ready to reply to that mobile on the

downlink. The longest a user will have to wait until it hears back from the

BS is approximately the number of users in the system multiplied by the

time the BS sends to each user. For a rate of 20 Mbps and 10 packet payloads

of 10 000 bits each, the time the BS sends to each mobile is approximately

5 msec. If there are 10 users, this means the total delay is around 50 msec.

However, even if the channel is fast fading, the covariance need not change

much in this length of time, since it depends only on the power-angle profile,

which in general is slowly varying. It is shown in Nicoli et al. (2002) that for

a mobile 500 m from the base station traveling less than 1000 km/h, and

a BS station with 8 antennas spaced half a wavelength apart, the channel

statistics can be considered stationary for around 100 msec. Thus, the PAP,

and hence the covariance would also be stationary for that time length.

We now consider how variations (we can assume they are small) in the

PAP would affect system performance. For a mobile moving away from the

BS at 100 km/h, the angle between the BS and the mobile will change

approximately 0.08◦ in 50 msec. If the center angle of the PAP changes

a corresponding amount, we would like to know how this impacts perfor-

mance results. Table 5.1 gives the 1% outage rate and ergodic capacity of a

wideband system when the actual PAP differs for the PAP used to estimate

the covariance. The outage rates are computed using the transmit strategy



The role of feedback, CSI, and coherence in MIMO systems 15

Actual PAP Feedback PAP C Ro

Ω ∼ L(0.0◦, 5◦) no feedback 3.12 2.70

Ω ∼ L(0.0◦, 5◦) Ω ∼ L(0.0◦, 5◦) 4.83 4.13

Ω ∼ L(0.6◦, 5◦) Ω ∼ L(0.0◦, 5◦) 4.83 4.14

Ω ∼ L(2.9◦, 5◦) Ω ∼ L(0.0◦, 5◦) 4.76 4.09

Ω ∼ L(0.0◦, 9◦) Ω ∼ L(0.0◦, 5◦) 4.83 4.13

Ω ∼ L(0.0◦, 1◦) Ω ∼ L(0.0◦, 5◦) 4.82 4.13

Ω ∼ L(2.9◦, 9◦) Ω ∼ L(0.0◦, 5◦) 4.77 4.10

Ω ∼ L(2.9◦, 1◦) Ω ∼ L(0.0◦, 5◦) 4.76 4.08

Table 5.1. The ergodic capacity (C) and 1% outage rate (Ro) in b/sHz

when the BS station beamforms to the dominant eigenmode of Ĉk,

computed for Ω ∼ L(0◦, 5◦).

that maximizes ergodic capacity. It is assumed that the power angle profile

remains Laplacian, and that only the mean and/or angular spread change

with time. The first row shows the capacity and outage rate when there

is no feedback and the transmitter employs a full blown space-time code

(the optimal transmit strategy when no feedback is available). The second

row shows the capacity and outage rate when the BS has perfect covariance

feedback information and beamforms in the direction of the covariance’s

dominant eigenmode (beamforming is the optimal strategy in this scenario

for the given parameters). The following rows display the resulting capac-

ity when the BS beamforms using imperfect covariance information. It can

be seen that even if the base station uses covariance information obtained

from a Laplacian whose mean has since shifted 2.9◦, and whose variance has

doubled, deleterious effects on performance are minimal. Even in this case,

where the changes in the PAP are much larger than one might expect, both

the ergodic capacity and outage rate are much higher than the corresponding

quantities when no feedback is available.

5.3.3 Optimal antenna spacing

We have seen that the spatial covariance depends on the PAP and the array

manifold, with the latter determined by the array geometry. Now that we

know that covariance feedback is readily available, a natural question to

ask is the following: how should we choose the antenna array geometry
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so as to optimize performance? When there is no feedback, a reasonable

strategy is to send i.i.d. Gaussian input from each transmit antenna, and the

best performance is attained by spacing the antennas far enough apart that

they see uncorrelated responses (Barriac and Madhow, 2004a). However,

when the BS knows the channel covariance, the optimal antenna spacing is

expected to be much smaller. For example, if we plan to beamform along

the dominant eigenmode, then it makes sense to space the antennas such

that the eigenvalue of this eigenmode is maximized.

We will focus on optimizing antenna spacing so as to maximize ergodic

capacity (assuming optimal transmission with covariance feedback). As we

have seen in Section 5.2.2, for large enough system bandwidth, this also

approximately maximizes the outage rate. Maximization of ergodic capacity

can be achieved by considering a single subcarrier, since the expected mutual

information achieved by a given strategy is the same across subcarriers. From

(5.8), the ergodic capacity with optimal power allocation is given by

C = max
pi:

PNT

i=1
pi=P,pi≥0

E

[

log

∣

∣

∣

∣

∣

I2 +
1

σ2
n

NT
∑

i=1

ziz
H
i piλi

∣

∣

∣

∣

∣

]

, (5.13)

where the zi are independent NR × 1 vectors whose elements are i.i.d.

CN (0, 1).

Ideally, we would like to maximize C by optimizing the antenna spacing,

given the PAP and the SNR. This problem is difficult to solve because the

eigenvalues {λi} capacity depends in a complex fashion on the PAP and the

array geometry. We therefore consider a simplified thought experiment, in

which we consider a system with K eigenmodes with equal nonzero eigenval-

ues, with the remaining eigenmodes corresponding to zero eigenvalues. The

question then becomes: what is the optimal value K = Kopt, as a function

of the number of receive elements NR, and the SNR. The results of such

a thought experiment provides valuable guidance on antenna spacing, even

though it may not always be possible to implement its prescriptions. For

example, for Kopt = 1, we should space the antennas closely enough to cre-

ate a single dominant eigenmode. However, if there are two multiple clusters

with very different angles of departure from the BS, then there will be two

dominant eigenmodes for any reasonable value of antenna spacing.

The results of the thought experiment can be paraphrased as follows:

create a number of eigenmodes that is roughly equal to the number of re-

ceive elements NR (except at very low SNR, where the optimal number of
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NR × NR

MIMO-OFDM

Encoder

Data in

NR × NR

MIMO-OFDM

Decoder

Data out
NT × NR

Beamformer

Fig. 5.2. MIMO-OFDM system with beamforming, where the number of transmit
elements NT = Nb, and the number of receive elements NR = Ns.

eigenmodes is one).† Beamforming along these eigenmodes therefore creates

an effective Ns × Ns MIMO system. While beamforming gains can be in-

creased by increasing the number NT of antennas at the BS transmitter, the

complexity of OFDM processing at the transmitter scales as NR, the much

smaller number of antennas in the mobile receiver, since the beamforming

weights are independent of the subcarriers. See Fig. 5.2. More importantly,

the receiver in the subscriber unit only sees the effective NR × NR MIMO

system, so that downlink performance can be improved by scaling up NT ,

without any additional burden on the less capable receiver in the subscriber

unit.

From a practical viewpoint, it is usually possible to space the transmit

antennas so as to roughly follow the prescriptions of the thought experiment:

in general, it is not possible to make the eigenvalues of the dominant eigen-

modes equal, but spacing the antennas such that the number of dominant

modes is close to Kopt still gives large capacity gains, as demonstrated in the

following example. Consider a BS with 6 antennas transmitting to a mobile

whose PAP is L(0◦, 5◦). The SNR, P/σ2
n, is set to 10 dB. As the antenna

spacing changes, so does Λ, and hence the optimal values of pi, which can

be solved for numerically. Fig. 5.3a shows how the ergodic capacity changes

for different values of d/λ (the antenna spacing over the wavelength). At

d/λ = 8, all channel eigenvalues are equal and hence the capacity at this

point corresponds to the maximum capacity attainable when there is no

feedback. As d/λ decreases, the channel energy becomes concentrated in

fewer eigenmodes, until only one eigenmode is dominant. Below d/λ = 0.5,

beamforming is optimal. (See Jafar and Goldsmith (2001) for the neces-

sary and sufficient conditions for the optimality of beamforming.) We do

not consider values of d/λ smaller than 0.4 because at very close spacing,

the different antennas can no longer be treated as separate elements due to

electro-magnetic coupling.

It is evident that beamforming with the BS antennas spaced at 0.4λ is

superior to using a full blown space time code with d/λ = 8, giving a gain

† See Barriac and Madhow (2004b) for details and caveats. Also see Boche and Jorswieck (2003a)
for results for NR = 1.
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Fig. 5.3. Ergodic capacity vs. d/λ when NT = 6 and Ω ∼ L(0◦, 5◦).

of over 1.5 b/sHz. Not only is capacity increased by using a smaller spacing,

but complexity is decreased dramatically by using beamforming instead of

space-time codes.

Now, suppose that there are two receive elements. Noting that Kopt = 2

when NR = 2 at moderate SNR, we expect that spacing the antennas such

that there are two dominant eigenmodes should give the best performance.

Again, we consider NT = 6 and the PAP∼ L(0◦, 5◦), but with NR now equal

to 2. For different values of d, the optimal powers pi are calculated numer-

ically by approximating derivatives by differentials and using the projected

gradient descent algorithm. Values for the ergodic capacity are plotted vs.

d/λ in Fig. 5.3b. Below d/λ = 0.82, sending along 2 eigenmodes is optimal.

As expected, the maximum capacity occurs when 2 eigenmodes are domi-

nant, at d/λ = 0.7. We also plot the outage rate in the figure, assuming that

there are 1024 subcarriers spaced 25 KHz apart, and that the PDP is expo-

nential with an rms delay spread of 0.5 µs. As expected from the discussion

in Section 5.2.2, the antenna spacing that maximizes ergodic capacity also

roughly maximizes the outage rate.

5.4 Uplink optimization using noncoherent eigenbeamforming

In this section we discuss how implicit knowledge of the channel covariance

at the BS can be used with noncoherent demodulation on the uplink, even

when no other channel information is available. The complexity remains
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practicable even as the receiver (BS) enjoys an SNR advantage from scaling

up the number of antennas. Noncoherent communication is well-suited to the

uplink of a cellular system in which the base-station must estimate a time-

varying channel to each mobile. Pilot-symbol based channel estimation is

potentially more efficient on the downlink, since the mobiles are able to share

a common pilot channel. Accurate estimates of the spatial covariance matrix,

available through averaging in wideband systems, allow eigenbeamforming

(Jacobsen et al., 2004) at the receiver along the dominant channel modes. For

a typical outdoor channel, where the number of dominant modes is small,

this allows the receiver to increase its SNR by scaling up the number of

antennas, while limiting the demodulation and decoding complexity which

scales with the number of channel modes used by the receiver.

Once the channel covariance is obtained at the BS by averaging uplink

measurements the BS will project the received signal along the L dominant

eigenvectors of the covariance matrix, obtained from its factorization (5.6).

This yields L parallel uncorrelated OFDM channels {〈s,ul〉}
L
l=1, where s

denotes the Nb × 1 received signal, as in (5.5), and L is typically much

smaller than the number of antenna elements Nb. As a rough measure of the

performance gain relative to a single antenna system, we define beamforming

gain as the SNR if the signal power is summed over the L chosen eigenmodes,

relative to the SNR for a single antenna element. This yields the following

formula for the beamforming gain as a function of L:

G(L) = 10 log10

(

Nb

∑L
l=1 λl

∑Nb

l=1 λl

)

, (5.14)

where λl are the channel eigenvalues.
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Fig. 5.4 shows the beamforming gain as a function of the number of eigen-

modes used for a 10 antenna system. The upper curve is for a single cluster

channel whose power angle profile is Laplacian with zero mean and angu-

lar spread 10◦, where angular spread is defined as the variance of Ω. The

lower plot is for a two cluster channel where the first cluster’s power an-

gle profile is as above, and the second cluster’s power angle profile is also

Laplacian with angular spread 10◦, but has its mean at 45◦ (both clusters

with the same power). The total receive power is normalized to be the same

for both plots. Note that beamforming gain quickly plateaus as a function

of L. Thus, beamforming along the dominant eigenmode captures most of

the received energy for the one cluster channel, while using the first two

eigenmodes captures most of the energy in the two cluster channel. Thus,

for typical outdoor channels, estimation of the channel covariance enables

the use of a small number of eigenmodes by the demodulator and decoder,

limiting complexity while preserving the SNR advantage from scaling up the

number of receive elements.

The signals for the L eigenmodes can be combined in a number of ways.

The gain on the kth subcarrier along the lth eigenmode is given by gk(l) =

〈hk,ul〉. One possibility is to explicitly estimate the scalar channel gains

{gk(l), l = 1, . . . , L} using pilots, and to then perform coherent diversity

combining of the L branches to obtain an estimate of xk. The advantage

that this may have over estimation of the original Nb × 1 channel vector hk

is that fewer gains may need to be explicitly estimated. Another possibility

is noncoherent diversity combining, which is consistent with the goal of

reducing overhead in uplink transmission. In Jacobsen et al. (2004), serial

concatenation of an outer binary channel code with an inner differential

modulation code is employed for approaching noncoherent capacity on the

uplink of a wideband cellular channel. A simple, yet effective combining

strategy with iterative noncoherent processing is used: Parallel noncoherent

demodulators with extrinsic information from the channel decoder process

L dominant channel modes. The soft outputs of the demodulators are then

combined and sent back to the decoder as priors, setting up the next round

of parallel demodulation and decoding.

In addition to beamforming gain, various levels of diversity are attained by

processing the channel modes in parallel. Fig. 5.5 shows the affect of diversity

level on noncoherent capacity when the received power is normalized to

one and distributed equally amongst L = 1, 2, 3, 4 dominant eigenmodes.

To illustrate beamforming gain in this context, consider a 10 element BS

array with one dominant channel mode. The SNR per antenna element in

such a system is 10 dB less than that of a single antenna system operating
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at the same rate; for example, we see from Fig. 5.5 that a single antenna

system requires SNR of 2 dB for a spectral efficiency of 0.8 bits/symbol; the

corresponding SNR per antenna element for a 10 element array with a single

dominant mode is -8 dB.

5.5 Conclusions

Space-time communication systems that leverage uplink/downlink asymme-

try in addition to statistical reciprocity inherent to wideband outdoor chan-

nels enjoy large performance gains, while at the same time reducing signal

processing complexity at both the base station and mobile radio. Specifi-

cally, the techniques presented in this chapter enable an increase in capacity

by increasing the number of antennas at the base station, without any im-

pact on transceiver complexity at the mobile. While the performance gains

from these techniques are evaluated in Shannon theoretic terms, advances in

turbo-like coded modulation imply that these information theoretic limits

are achievable at reasonable complexity.
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