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Abstract —

This work investigates a noncoherent commu-

nication system employing Differential Quadrature

Amplitude Modulation (QAM), serially concate-

nated with a binary convolutional code. Reduced-

complexity methods for iterative noncoherent demod-

ulation and decoding are developed and evaluated for

two blockwise constant channel models, the phase-

noisy AWGN and the Rayleigh fading channels. We

present a simple averaging estimate of the unknown

channel amplitude based on conventional differential

detection statistics, which is key to efficient block non-

coherent demodulation for QAM alphabets. The un-

known channel phase is quantized over several phase

bins. Maximum a posteriori probability (MAP) block

demodulation is performed based on the estimated

amplitude and quantized phase. A Bayesian combi-

nation of the outputs of the parallel phase branches is

passed up to the decoder. Significant complexity re-

duction is obtained by pruning the number of parallel

phase branches down to two based on a log-likelihood

ratio metric that incorporates feedback from the de-

coder. The reduced-complexity receiver comes within

2.4 dB of capacity for the block Rayleigh fading chan-

nel for signaling at rate .675 bits/symbol using 8-

QAM.

I. Introduction

The standard approach to estimation and tracking of time-
varying wireless channels is to employ pilots. There are two
main drawbacks of this approach: the pilot overhead required
to accurately track a rapidly varying channel may be exces-
sive, and a channel estimate based purely on the pilot is sub-
optimal, since it does not exploit the bulk of the transmit-
ted energy, which is in the data. A number of recent pa-
pers [1, 2, 3, 4] consider an alternative approach to wireless
transceiver design, in which the channel and data are esti-
mated jointly without necessarily using pilots. Such nonco-

herent techniques are particularly efficient when the channel
can be approximated as constant over several symbols. In this
case, block differential demodulation is known to approach co-
herent (i.e., channel known at the receiver) performance for
uncoded systems [5, 6]. For coded systems, iterative infor-
mation exchange between a decoder and a block noncoherent
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demodulator is shown [4] to approach the capacity, computed
in [7], of the block fading channel. Earlier work on iterative
demodulation and decoding includes [1, 2, 3].
Most practical communication strategies over fading chan-

nels, including the constructive encoding and decoding strate-
gies referenced above, employ PSK alphabets. However, it is
known [4] that, for a given constellation size, amplitude/phase
modulation is more power-efficient at moderate to high SNR
for noncoherent communication, just as it is for coherent
communication over the classical AWGN channel. Our cur-
rent work therefore investigates noncoherent systems based on
QAM-like alphabets. Serial concatenation of an outer binary
code with differential QAM (using an obvious generalization
of differential PSK) is employed, together with iterative de-
modulation and decoding as in prior work. However, a key
new technical issue that must be solved is that of obtaining,
at reasonable complexity, amplitude estimates that are suffi-
ciently accurate for QAM demodulation. We show that this
can be achieved by a bootstrap stage, using decisions from con-
ventional differential demodulation based on two consecutive
symbols. This stage also yields initial soft decisions to be fed
up to the decoder. The unknown phase is handled by quantiz-
ing it into a number of bins as in [4, 6, 8], running Maximum
A Posteriori Probability (MAP) demodulators in parallel for
each phase bin, and combining the outputs in Bayesian fash-
ion. However, in contrast to earlier work, a phase arbitration
mechanism based on a log-likelihood ratio (LLR) criterion is
used to reduce the number of phase bins per block to two af-
ter the first iteration. With this simplification, the complex-
ity of noncoherent block demodulation begins approaching the
benchmark of (idealized) coherent MAP demodulation.
We denote scalar random variables with capitals (e.g. X),

using lower case (e.g. x) for their realization. Likewise, ran-
dom vectors, such asW, will appear boldface, and a lower case
bold w denotes a vector of deterministic values. The notation
W ∼ CN (0,K) is used for a vector of circularly symmetric
complex Gaussian random variables of mean zero and covari-
ance matrix E[WWH ] = K, in particular,

fW(w) =
1

det(πK)
exp(−wH

K
−1w) (1)

where H is the conjugate transpose operator.

II. System model

Figure 1 depicts the baseband transmitter and channel
model. The information symbol sequence u is coded and inter-
leaved, producing code word c. Consider the two ring 8-QAM
constellation and differential encoding of Figure 2. The most
significant bit of a 3-bit code symbol ct = {c

t
0c
t
1c
t
2} affects am-

plitude transition between the (t − 1)th and tth transmitted
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Figure 1: Transmitter and channel

8-QAM symbol. Phase transitions are given by a Gray encod-
ing of the remaining two bits. Letting g denote the differen-
tial mapping, the tth transmitted symbol is xt = g(ct, xt−1).
This bit-to-symbol mapping is characterized by modulo- π

2
ro-

tational invariance, with respect to differential detection. As
such, we need only to recover the unknown channel phase in
[0, π

2
).
The block constant channel model is Y = Hx+W, where

Y and x are one block of block of transmitted and received
symbols, H = Aejθ is the unknown channel and W is com-
plex additive white Gaussian noise, variance 2σ2I. For the
phase-noisy AWGN channel, we set A = 1, with θ uniformly
distributed on [0, 2π]. For the block Rayleigh fading model,
H ∼ CN (0, 1); equivalently, A is Rayleigh, θ is U [0, 2π], and
A, θ, are independent.
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Figure 2: Differential 8-QAM signaling

III. MAP Demodulation

Our methods rely on block-wise MAP demodulation of
the differentially encoded QAM data. Viewing g as a unit
rate/memory recursive convolutional code, differential encod-
ing can be represented graphically with the trellis of Figure
3. Associated with each trellis edge e are an initial and final
state, input code symbol ct(e), and output channel symbol
xt(e). Coherent demodulation is performed with the BCJR
algorithm. The a posteriori log-likelihood of the tth code sym-
bol is given by (2)

λt(c|h) =
?
max

e:ct(e)=c

{

αt−1(s
I(e)) + γt(e|h) + βt(s

F (e))
}

(2)
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Figure 3: Trellis section of block demodulator

where αt(s) and βt(s) are computed via the standard for-
wards/backwards recursions [9, 10], and max?(x, y) = log(ex+
ey). The branch metric γt(e|h) of edge e is as in (3).

γt(e|h) = λ
I
t (ct(e)) +

1

σ2
< < yt, hxt(e) > (3)

Prior differential symbol probabilities λIt (c) are initially zero,
and then set by the outer decoder in an iterative receiver.

IV. Channel amplitude estimate

We present an amplitude estimate that is well matched to
ring type QAM constellations. Presented here for the case of
2-ring, 8-ary signaling, the estimate generalizes easily to larger
constellations. The complexity is linear in the product of the
number of rings and the alphabet size.
We employ conventional two-symbol differential detection

to obtain likelihoods for the transmitted amplitude levels,
which are then used to obtain an averaged amplitude esti-
mator for a block of symbols. Note that this bootstrap stage
can be skipped when estimating the channel amplitude for
constant-amplitude PSK signaling [4]. The vector of two re-
ceived symbols is (4)

yt ≡

[

yt−1
yt

]

= h

[

Rt−1

Rte
jΦt

]

+

[

wt−1
wt

]

= hxt +wt (4)

where Rt ∈ {r0, r1} is the modulus of the tth transmitted
symbol and Φt the differential phase. The phase of the (t−1)

th

symbol has been factored into the channel, without changing
its circularly symmetric density. The noncoherent a priori

density (less constant terms) is (5).

log fx(yt) =
1

2σ2
|yHt x|

2

‖x‖2 + 2σ2
− log(‖x‖2 + 2σ2) (5)

π
t
r ≡ Pr(Rt = r|yt) ∝

∑

x:Rt=r

fx(yt) (6)

Denoting the probability of the tth symbol amplitude Rt as in
(6), the fading gain estimate Â is computed with (7) where T
denotes the block length, or coherence interval of the channel.

Â
2 = max

{

0,
yHy − 2Tσ2

∑T−1
t=0

∑

r=r0,r1
πtrr2

}

(7)

V. Phase quantization and iterative reception

Direct implementation of MAP block noncoherent demod-
ulation is computationally infeasible, because the noncoher-
ent a posteriori density does not factor into a product of T
i.i.d. terms, so that the BCJR algorithm cannot be directly
applied. However, we can approximate MAP noncoherent de-
modulation using the coherent BCJR algorithm as a building
block, by plugging in the amplitude estimate of (7), and Q-
level quantization of the unknown channel phase θ in the range
[0, π

2
). For each quantization branch q ∈ Q = {0, 1, . . . , Q−1}

we can use (2) and (3) with h = Â exp( jπq
2Q
). The resulting

λ
O
t (c) =

?
max
q∈Q

{

λt(c|Â exp

(

jπq

2Q

)

)

}

− λ
I
t (c) (8)

code symbol likelihoods are then averaged (8) to yield extrin-
sic likelihoods of an approximation to the true noncoherent
density. See [4] for the details of this approximation. Figure 4
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Figure 4: Module for iterative demodulation/decoding

depicts the soft-input soft-output noncoherent demodulation
module that represents (8) and enables turbo-like processing
between demodulator and channel decoder.
Joint noncoherent demodulation and decoding is illustrated

in Figure 5. First, a conventional two symbol detector is used
to noncoherently demodulate the received data sequence. We
refer to this step as bootstrapping the receiver, as it provides
the initial estimate of code symbol likelihoods. These likeli-
hoods are (i) used for channel amplitude estimation and (ii)
passed directly to the outer SISO convolutional decoder. The
channel decoder computes code symbol extrinsic likelihoods
which are subsequently fed back to the demodulator. The
SISO demodulation module performs block demodulation of
the received differential data sequence using parallel coher-
ent BCJR algorithms, as described previously. Demodulation
and decoding are performed iteratively until the termination
criterion is satisfied.
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Figure 5: Iterative receiver structure

VI. Parallel phase branch arbitration

Although the method of phase quantization demonstrates
near capacity performance on the block fading channel, each
phase branch requires its own BCJR computation per itera-
tion. Such a receiver requires Q times as many computations
as a coherent communication system employing the same num-
ber of iterations. However, experiments show that a genie-
based system which uses only the branch with phase clos-
est to the true channel phase provides excellent performance.
This motivates the development of a criterion for ranking and
pruning parallel phase branches as iterative demodulation and
decoding are performed.
For each block, we associate a metric for each phase branch

which measures the reliability of the soft decisions output by
that branch. The idea is to keep the phase branches which are
the most reliable. In particular, we employ the average (or
equivalently, the sum) of the code bit LLR magnitudes as a
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Figure 6: Average LLR magnitude for all phase branches,
with two closest noted

reliability measure. Other reliability measures such as the sum
of the binary entropies of the code bits could also be used, but
the LLR-based reliability metric leverages the computations
already performed by the BCJR algorithm. Figure 6 plots
typical values of the average LLR magnitude for a sequence of
blocks. The two “best” phase branches, i.e., the ones closest
to the true phase, are marked by circles. Note that, for most
blocks, at least one of these two branches is the one with the
largest metric. Furthermore, for blocks with larger metrics,
the two best branches are also the ones with the largest metric
values. This leads to a pruning scheme which chooses the two
branches with the largest average LLR values, as described
below.
Our proposed scheme is as follows. Bootstrap the receiver

with conventional two symbol detection as before, to obtain
amplitude estimates and soft decisions to be passed up to
the decoder. The decoder performs one iteration, and pro-
vides extrinsic information back to the demodulator. Now,
perform parallel block demodulation with all phase branches,
and compute the extrinsic code bit likelihoods for each phase
branch. Use the average code bit LLR magnitude criterion for
eliminating all but two phase branches on each block. Since
λt(c|Â exp(

jπq
2Q
)) are already known, the receiver will still com-

pute (8). All subsequent demodulations will only consider the
selected subset of two phase branches. As such, after the first
iteration of full phase quantization, the arbitrated scheme re-
quires only twice as many demodulation computations as its
coherent equivalent.

VII. Results

We first present simulation results for the phase-noisy
AWGN channel. The information bits are encoded with the
G = [20 25 27 33] rate- 1

4
non-recursive convolutional code.

Codeword length is 64,000 bits. We have chosen a moderate
coherence interval, T = 10, for the blockwise constant chan-
nel. The information rate of the coded 8-QAM system is then
3(T−1)
4T

since the first symbol of each block serves as refer-
ence. Simulations have shown that Q = 5 quantization levels
in [0, π

2
) are sufficient to achieve averaging gains in the non-

coherent system. Figure 7 demonstrates the performance of
the iterative receiver on a phase-noisy AWGN channel, after
20 iterations. The reduced-complexity noncoherent receiver is
less than .9 dB from the idealized benchmark of coherent re-
ception (i.e., known amplitude and phase, unrealizable for our
channel model) for the same code. This gap can be roughly
decomposed as follows: about .5 dB for unknown phase (i.e.,
for using parallel phase branches instead of the true phase),
less than .2 dB for unknown amplitude (i.e., for using the am-



plitude estimate instead of the true amplitude), and about .2
dB for complexity reduction by pruning the number of phase
branches to two.
Figure 8 provides results for the Rayleigh block fading

channel with same system parameters as above. Again, the
reduced-complexity noncoherent receiver is about .9 dB from
(unrealizable) coherent reception of the same code, with about
.3 dB for unknown phase, .5 dB for unknown amplitude, and
about .1 dB for phase branch pruning. Indeed, the reduced
complexity receiver is only about .3 dB from a genie-based re-
ceiver which employs the estimated amplitude and the quan-
tized phase closest to the true phase. Note that the loss due
to amplitude estimation is larger for the Rayleigh fading chan-
nel, possibly because the contribution of too many blocks to
the likelihood computations is being zeroed out (erased) when
the amplitude estimator is set to zero. Addressing this is-
sue is an important topic for future work, especially when
we consider larger constellations. Note that the noncoherent
block Rayleigh fading capacity benchmark for 8-QAM at this
information rate is 2.7 dB [4], so that our reduced complex-
ity noncoherent receiver is about 2.4 dB away from capacity,
with 10−4 taken as the reliable communication BER thresh-
old. Since even the unrealizable coherent benchmark for the
given code is 1.6 dB away from this, we can attribute at least
1.6 dB of this gap to code construction. Part of the remaining
.8 dB could potentially be closed by improving the noncoher-
ent demodulation strategy.

VIII. Conclusions

The results in this paper suggest the feasibility of efficient
noncoherent communication at moderate to large SNR using
QAM alphabets. For an M -ary constellation consisting of n
PSK rings, the complexity of the simple amplitude estimator
proposed here scales as nM , so that the use of larger constel-
lations is computationally tractable. A natural application
of these techniques is to Orthogonal Frequency Division Mul-
tiplexed (OFDM) systems, for which the channel seen by a
contiguous time-frequency block is often well modeled as a
constant complex scalar. Our experience suggests the follow-
ing design strategy for approaching capacity in noncoherent
systems, by addressing the issues of encoding and decoding
separately. First, we can obtain a lower bound on the gap
due to encoding by comparing the unrealizable coherent per-
formance of the code with noncoherent capacity. This quickly
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Figure 7: Phase-noisy AWGN results
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Figure 8: Rayleigh block fading results

indicates how much effort must be expended in refining code
constructions, in a manner that is decoupled from the com-
plexity reduction strategies required for practical noncoher-
ent demodulation. Second, we can quantify how much of the
gap between noncoherent and coherent demodulation is due
to not knowing the amplitude, not knowing the phase, and
due to complexity-reducing techniques. This indicates the ef-
fort required to refine demodulation and decoding strategies.
The ultimate goal is to simplify joint noncoherent demodu-
lation and decoding strategies for large QAM alphabets, so
as to have complexity comparable to conventional pilot-based
reception, while approaching noncoherent capacity.
The operating regime where the framework considered here

is of most interest is that of low to moderate mobility, and
moderate to large SNR: the lower the mobility, the more fea-
sible it is to operate at higher SNR and higher spectral effi-
ciency using a large constellation. However, as the mobility
(and hence the rate of channel time variations) increases, the
block-wise constant channel model used here starts breaking
down, and it becomes extremely power-inefficient to operate
at high SNR [11]. Indeed, even the structure of the noncoher-
ent demodulator must be reconsidered in this setting [12].
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